These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34837222)

  • 21. Auditory role of the suprabranchial chamber in gourami fish.
    Yan HY
    J Comp Physiol A; 1998 Sep; 183(3):325-33. PubMed ID: 9763702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Both sexes produce sounds in vocal fish species: testing the hypothesis in the pygmy gourami (labyrinth fishes).
    Liesch N; Ladich F
    J Exp Biol; 2020 May; 223(Pt 10):. PubMed ID: 32300049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Social cichlid fish change behaviour in response to a visual predator stimulus, but not the odour of damaged conspecifics.
    O'Connor CM; Reddon AR; Odetunde A; Jindal S; Balshine S
    Behav Processes; 2015 Dec; 121():21-9. PubMed ID: 26467942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of degraded optical conditions on behavioural responses to alarm cues in a freshwater fish.
    Ranåker L; Nilsson PA; Brönmark C
    PLoS One; 2012; 7(6):e38411. PubMed ID: 22745663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are chemical alarm cues conserved within salmonid fishes?
    Mirza RS; Chivers DP
    J Chem Ecol; 2001 Aug; 27(8):1641-55. PubMed ID: 11521402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.
    Green SJ; Côté IM
    J Anim Ecol; 2014 Nov; 83(6):1451-60. PubMed ID: 24861366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ontogenetic development of auditory sensitivity, vocalization and acoustic communication in the labyrinth fish Trichopsis vittata.
    Wysocki LE; Ladich F
    J Comp Physiol A; 2001 Apr; 187(3):177-87. PubMed ID: 11401197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Making the dead talk: alarm cue-mediated antipredator behaviour and learning are enhanced when injured conspecifics experience high predation risk.
    Lucon-Xiccato T; Chivers DP; Mitchell MD; Ferrari MC
    Biol Lett; 2016 Aug; 12(8):. PubMed ID: 27531160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noise constrains heterospecific eavesdropping more than conspecific reception of alarm calls.
    Zhou Y; Radford AN; Magrath RD
    Biol Lett; 2024 Jan; 20(1):20230410. PubMed ID: 38228188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predation risk mediates cognitive constraints following physical exertion in schoolmaster snapper.
    Elvidge CK; Cooke SJ
    Physiol Behav; 2020 Feb; 214():112767. PubMed ID: 31816275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Can fishes resolve temporal characteristics of sounds? New insights using auditory brainstem responses.
    Wysocki LE; Ladich F
    Hear Res; 2002 Jul; 169(1-2):36-46. PubMed ID: 12121738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acquired predator recognition via epidermal alarm cues but not dietary alarm cues by isolated pupfish.
    Wisenden BD; Anderson CM; Hanson KA; Johnson MIM; Stockwell CA
    R Soc Open Sci; 2023 Sep; 10(9):230444. PubMed ID: 37711143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alarm calls or predator calls: which elicit stronger responses in ungulate communities living with and without lions?
    Makin DF; Chamaillé-Jammes S; Shrader AM
    Oecologia; 2019 May; 190(1):25-35. PubMed ID: 30919106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infochemicals Influence Neonicotinoid Toxicity-Impact in Leaf Consumption, Growth, and Predation of the Amphipod Gammarus fossarum.
    Bundschuh M; Zubrod JP; Klöttschen S; Englert D; Schulz R
    Environ Toxicol Chem; 2020 Sep; 39(9):1755-1764. PubMed ID: 32539175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eavesdropping on heterospecific alarm calls: from mechanisms to consequences.
    Magrath RD; Haff TM; Fallow PM; Radford AN
    Biol Rev Camb Philos Soc; 2015 May; 90(2):560-86. PubMed ID: 24917385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Olfactory assessment of predation risk in the aquatic environment.
    Wisenden BD
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1205-8. PubMed ID: 11079399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Innate responses to conspecific and heterospecific alarm cues in the endangered eastern cape redfin Pseudobarbus afer.
    Magellan K; Booth AJ; Weyl OLF
    J Fish Biol; 2020 May; 96(5):1284-1290. PubMed ID: 31705757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual cues of predation risk outweigh acoustic cues: a field experiment in black-capped chickadees.
    Arteaga-Torres JD; Wijmenga JJ; Mathot KJ
    Proc Biol Sci; 2020 Oct; 287(1936):20202002. PubMed ID: 33023412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of temperature on acoustic communication: sound production in the croaking gourami (labyrinth fishes).
    Ladich F; Schleinzer G
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Apr; 182():8-13. PubMed ID: 25433336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nestlings reduce their predation risk by attending to predator-information encoded within conspecific alarm calls.
    Barati A; McDonald PG
    Sci Rep; 2017 Sep; 7(1):11736. PubMed ID: 28916776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.