These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34837434)

  • 1. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome.
    Petersen USS; Doktor TK; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):103-127. PubMed ID: 34837434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisense Oligonucleotide Rescue of Deep-Intronic Variants Activating Pseudoexons in the 6-Pyruvoyl-Tetrahydropterin Synthase Gene.
    Martínez-Pizarro A; Leal F; Holm LL; Doktor TK; Petersen USS; Bueno M; Thöny B; Pérez B; Andresen BS; Desviat LR
    Nucleic Acid Ther; 2022 Oct; 32(5):378-390. PubMed ID: 35833796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing.
    Keegan NP; Wilton SD; Fletcher S
    Front Genet; 2021; 12():806946. PubMed ID: 35140743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The deep intronic c.903+469T>C mutation in the MTRR gene creates an SF2/ASF binding exonic splicing enhancer, which leads to pseudoexon activation and causes the cblE type of homocystinuria.
    Homolova K; Zavadakova P; Doktor TK; Schroeder LD; Kozich V; Andresen BS
    Hum Mutat; 2010 Apr; 31(4):437-44. PubMed ID: 20120036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed molecular characterization of a novel IDS exonic mutation associated with multiple pseudoexon activation.
    Grodecká L; Kováčová T; Kramárek M; Seneca S; Stouffs K; De Laet C; Majer F; Kršjaková T; Hujová P; Hrnčířová K; Souček P; Lissens W; Buratti E; Freiberger T
    J Mol Med (Berl); 2017 Mar; 95(3):299-309. PubMed ID: 27837218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease.
    Albert S; Garanto A; Sangermano R; Khan M; Bax NM; Hoyng CB; Zernant J; Lee W; Allikmets R; Collin RWJ; Cremers FPM
    Am J Hum Genet; 2018 Apr; 102(4):517-527. PubMed ID: 29526278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple splicing defects in an intronic false exon.
    Sun H; Chasin LA
    Mol Cell Biol; 2000 Sep; 20(17):6414-25. PubMed ID: 10938119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prevalent deep intronic c. 639+919 G>A GLA mutation causes pseudoexon activation and Fabry disease by abolishing the binding of hnRNPA1 and hnRNP A2/B1 to a splicing silencer.
    Palhais B; Dembic M; Sabaratnam R; Nielsen KS; Doktor TK; Bruun GH; Andresen BS
    Mol Genet Metab; 2016 Nov; 119(3):258-269. PubMed ID: 27595546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intronic splicing code: multiple factors involved in ATM pseudoexon definition.
    Dhir A; Buratti E; van Santen MA; Lührmann R; Baralle FE
    EMBO J; 2010 Feb; 29(4):749-60. PubMed ID: 20094034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disease-causing mutations improving the branch site and polypyrimidine tract: pseudoexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail.
    Meili D; Kralovicova J; Zagalak J; Bonafé L; Fiori L; Blau N; Thöny B; Vorechovsky I
    Hum Mutat; 2009 May; 30(5):823-31. PubMed ID: 19280650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Characteristics of
    Weisschuh N; Mazzola P; Bertrand M; Haack TB; Wissinger B; Kohl S; Stingl K
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Intronic Mutation in SERPING1 Caused Hereditary Angioedema Through Pseudoexon Activation.
    Hujová P; Souček P; Grodecká L; Grombiříková H; Ravčuková B; Kuklínek P; Hakl R; Litzman J; Freiberger T
    J Clin Immunol; 2020 Apr; 40(3):435-446. PubMed ID: 31982983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation.
    Bruun GH; Doktor TK; Borch-Jensen J; Masuda A; Krainer AR; Ohno K; Andresen BS
    BMC Biol; 2016 Jul; 14():54. PubMed ID: 27380775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive characterisation of intronic mis-splicing mutations in human cancers.
    Jung H; Lee KS; Choi JK
    Oncogene; 2021 Feb; 40(7):1347-1361. PubMed ID: 33420369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA structure is a key regulatory element in pathological ATM and CFTR pseudoexon inclusion events.
    Buratti E; Dhir A; Lewandowska MA; Baralle FE
    Nucleic Acids Res; 2007; 35(13):4369-83. PubMed ID: 17580311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-spliceosomal binding of U1 small nuclear ribonucleoprotein (RNP) and heterogenous nuclear RNP E1 is associated with suppression of a growth hormone receptor pseudoexon.
    Akker SA; Misra S; Aslam S; Morgan EL; Smith PJ; Khoo B; Chew SL
    Mol Endocrinol; 2007 Oct; 21(10):2529-40. PubMed ID: 17622584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencer elements as possible inhibitors of pseudoexon splicing.
    Sironi M; Menozzi G; Riva L; Cagliani R; Comi GP; Bresolin N; Giorda R; Pozzoli U
    Nucleic Acids Res; 2004; 32(5):1783-91. PubMed ID: 15034146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine characterization of the recurrent c.1584+18672A>G deep-intronic mutation in the cystic fibrosis transmembrane conductance regulator gene.
    Costantino L; Rusconi D; Soldà G; Seia M; Paracchini V; Porcaro L; Asselta R; Colombo C; Duga S
    Am J Respir Cell Mol Biol; 2013 May; 48(5):619-25. PubMed ID: 23349053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splicing mutations in inherited retinal diseases.
    Weisschuh N; Buena-Atienza E; Wissinger B
    Prog Retin Eye Res; 2021 Jan; 80():100874. PubMed ID: 32553897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.