BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34837434)

  • 21. Splicing mutations in inherited retinal diseases.
    Weisschuh N; Buena-Atienza E; Wissinger B
    Prog Retin Eye Res; 2021 Jan; 80():100874. PubMed ID: 32553897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulating
    Spangsberg Petersen US; Dembic M; Martínez-Pizarro A; Richard E; Holm LL; Havelund JF; Doktor TK; Larsen MR; Færgeman NJ; Desviat LR; Andresen BS
    Mol Ther Nucleic Acids; 2024 Mar; 35(1):102101. PubMed ID: 38204914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Splicing Characteristics of Dystrophin Pseudoexons and Identification of a Novel Pathogenic Intronic Variant in the
    Xie Z; Tang L; Xie Z; Sun C; Shuai H; Zhou C; Liu Y; Yu M; Zheng Y; Meng L; Zhang W; Leal SM; Wang Z; Schrauwen I; Yuan Y
    Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33050418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of splice defects due to noncanonical splice site or deep-intronic variants in ABCA4.
    Fadaie Z; Khan M; Del Pozo-Valero M; Cornelis SS; Ayuso C; Cremers FPM; Roosing S; The Abca Study Group
    Hum Mutat; 2019 Dec; 40(12):2365-2376. PubMed ID: 31397521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies.
    Bolduc V; Foley AR; Solomon-Degefa H; Sarathy A; Donkervoort S; Hu Y; Chen GS; Sizov K; Nalls M; Zhou H; Aguti S; Cummings BB; Lek M; Tukiainen T; Marshall JL; Regev O; Marek-Yagel D; Sarkozy A; Butterfield RJ; Jou C; Jimenez-Mallebrera C; Li Y; Gartioux C; Mamchaoui K; Allamand V; Gualandi F; Ferlini A; Hanssen E; ; Wilton SD; Lamandé SR; MacArthur DG; Wagener R; Muntoni F; Bönnemann CG
    JCI Insight; 2019 Mar; 4(6):. PubMed ID: 30895940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudoexon activation in the DMD gene as a novel mechanism for Becker muscular dystrophy.
    Tuffery-Giraud S; Saquet C; Chambert S; Claustres M
    Hum Mutat; 2003 Jun; 21(6):608-14. PubMed ID: 12754707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Background splicing as a predictor of aberrant splicing in genetic disease.
    D A; Y L; R S; H D; E B; Rm W; I V; L C; N J D
    RNA Biol; 2022; 19(1):256-265. PubMed ID: 35188075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Spliceogenic Variants beyond Canonical GT-AG Splice Sites in Hereditary Cancer Genes.
    Dragoš VŠ; Strojnik K; Klančar G; Škerl P; Stegel V; Blatnik A; Banjac M; Krajc M; Novaković S
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new pseudoexon activation due to ultrarare branch point formation in Duchenne muscular dystrophy.
    Xie Z; Sun C; Liu C; Lu Y; Chen B; Wu R; Liu Y; Liu R; Peng Q; Deng J; Meng L; Wang Z; Zhang W; Yuan Y
    Neuromuscul Disord; 2024 Feb; 35():8-12. PubMed ID: 38194733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process.
    Reynolds DJ; Hertel KJ
    PLoS One; 2019; 14(10):e0223132. PubMed ID: 31581208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: Comparison of wet-lab and bioinformatics analyses.
    Holla ØL; Nakken S; Mattingsdal M; Ranheim T; Berge KE; Defesche JC; Leren TP
    Mol Genet Metab; 2009 Apr; 96(4):245-52. PubMed ID: 19208450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudoexons provide a mechanism for allele-specific expression of APC in familial adenomatous polyposis.
    Nieminen TT; Pavicic W; Porkka N; Kankainen M; Järvinen HJ; Lepistö A; Peltomäki P
    Oncotarget; 2016 Oct; 7(43):70685-70698. PubMed ID: 27683109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Next-generation sequencing reveals deep intronic cryptic ABCC8 and HADH splicing founder mutations causing hyperinsulinism by pseudoexon activation.
    Flanagan SE; Xie W; Caswell R; Damhuis A; Vianey-Saban C; Akcay T; Darendeliler F; Bas F; Guven A; Siklar Z; Ocal G; Berberoglu M; Murphy N; O'Sullivan M; Green A; Clayton PE; Banerjee I; Clayton PT; Hussain K; Weedon MN; Ellard S
    Am J Hum Genet; 2013 Jan; 92(1):131-6. PubMed ID: 23273570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alternative splicing: role of pseudoexons in human disease and potential therapeutic strategies.
    Dhir A; Buratti E
    FEBS J; 2010 Feb; 277(4):841-55. PubMed ID: 20082636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides.
    Sangermano R; Garanto A; Khan M; Runhart EH; Bauwens M; Bax NM; van den Born LI; Khan MI; Cornelis SS; Verheij JBGM; Pott JR; Thiadens AAHJ; Klaver CCW; Puech B; Meunier I; Naessens S; Arno G; Fakin A; Carss KJ; Raymond FL; Webster AR; Dhaenens CM; Stöhr H; Grassmann F; Weber BHF; Hoyng CB; De Baere E; Albert S; Collin RWJ; Cremers FPM
    Genet Med; 2019 Aug; 21(8):1751-1760. PubMed ID: 30643219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homozygosity mapping and whole-genome sequencing reveals a deep intronic PROM1 mutation causing cone-rod dystrophy by pseudoexon activation.
    Mayer AK; Rohrschneider K; Strom TM; Glöckle N; Kohl S; Wissinger B; Weisschuh N
    Eur J Hum Genet; 2016 Mar; 24(3):459-62. PubMed ID: 26153215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism and modeling of human disease-associated near-exon intronic variants that perturb RNA splicing.
    Chiang HL; Chen YT; Su JY; Lin HN; Yu CA; Hung YJ; Wang YL; Huang YT; Lin CL
    Nat Struct Mol Biol; 2022 Nov; 29(11):1043-1055. PubMed ID: 36303034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Minigene Splicing Assays and Long-Read Sequencing to Unravel Pathogenic Deep-Intronic Variants in
    Tamayo A; Núñez-Moreno G; Ruiz C; Plaisancie J; Damian A; Moya J; Chassaing N; Calvas P; Ayuso C; Minguez P; Corton M
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exonization of transposed elements: A challenge and opportunity for evolution.
    Schmitz J; Brosius J
    Biochimie; 2011 Nov; 93(11):1928-34. PubMed ID: 21787833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudoexons of the DMD Gene.
    Keegan NP
    J Neuromuscul Dis; 2020; 7(2):77-95. PubMed ID: 32176650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.