These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34837434)

  • 21. Regulating
    Spangsberg Petersen US; Dembic M; Martínez-Pizarro A; Richard E; Holm LL; Havelund JF; Doktor TK; Larsen MR; Færgeman NJ; Desviat LR; Andresen BS
    Mol Ther Nucleic Acids; 2024 Mar; 35(1):102101. PubMed ID: 38204914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Splicing Characteristics of Dystrophin Pseudoexons and Identification of a Novel Pathogenic Intronic Variant in the
    Xie Z; Tang L; Xie Z; Sun C; Shuai H; Zhou C; Liu Y; Yu M; Zheng Y; Meng L; Zhang W; Leal SM; Wang Z; Schrauwen I; Yuan Y
    Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33050418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of splice defects due to noncanonical splice site or deep-intronic variants in ABCA4.
    Fadaie Z; Khan M; Del Pozo-Valero M; Cornelis SS; Ayuso C; Cremers FPM; Roosing S; The Abca Study Group
    Hum Mutat; 2019 Dec; 40(12):2365-2376. PubMed ID: 31397521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies.
    Bolduc V; Foley AR; Solomon-Degefa H; Sarathy A; Donkervoort S; Hu Y; Chen GS; Sizov K; Nalls M; Zhou H; Aguti S; Cummings BB; Lek M; Tukiainen T; Marshall JL; Regev O; Marek-Yagel D; Sarkozy A; Butterfield RJ; Jou C; Jimenez-Mallebrera C; Li Y; Gartioux C; Mamchaoui K; Allamand V; Gualandi F; Ferlini A; Hanssen E; ; Wilton SD; Lamandé SR; MacArthur DG; Wagener R; Muntoni F; Bönnemann CG
    JCI Insight; 2019 Mar; 4(6):. PubMed ID: 30895940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudoexon activation in the DMD gene as a novel mechanism for Becker muscular dystrophy.
    Tuffery-Giraud S; Saquet C; Chambert S; Claustres M
    Hum Mutat; 2003 Jun; 21(6):608-14. PubMed ID: 12754707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Background splicing as a predictor of aberrant splicing in genetic disease.
    D A; Y L; R S; H D; E B; Rm W; I V; L C; N J D
    RNA Biol; 2022; 19(1):256-265. PubMed ID: 35188075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Spliceogenic Variants beyond Canonical GT-AG Splice Sites in Hereditary Cancer Genes.
    Dragoš VŠ; Strojnik K; Klančar G; Škerl P; Stegel V; Blatnik A; Banjac M; Krajc M; Novaković S
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new pseudoexon activation due to ultrarare branch point formation in Duchenne muscular dystrophy.
    Xie Z; Sun C; Liu C; Lu Y; Chen B; Wu R; Liu Y; Liu R; Peng Q; Deng J; Meng L; Wang Z; Zhang W; Yuan Y
    Neuromuscul Disord; 2024 Feb; 35():8-12. PubMed ID: 38194733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process.
    Reynolds DJ; Hertel KJ
    PLoS One; 2019; 14(10):e0223132. PubMed ID: 31581208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: Comparison of wet-lab and bioinformatics analyses.
    Holla ØL; Nakken S; Mattingsdal M; Ranheim T; Berge KE; Defesche JC; Leren TP
    Mol Genet Metab; 2009 Apr; 96(4):245-52. PubMed ID: 19208450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pseudoexons provide a mechanism for allele-specific expression of APC in familial adenomatous polyposis.
    Nieminen TT; Pavicic W; Porkka N; Kankainen M; Järvinen HJ; Lepistö A; Peltomäki P
    Oncotarget; 2016 Oct; 7(43):70685-70698. PubMed ID: 27683109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Next-generation sequencing reveals deep intronic cryptic ABCC8 and HADH splicing founder mutations causing hyperinsulinism by pseudoexon activation.
    Flanagan SE; Xie W; Caswell R; Damhuis A; Vianey-Saban C; Akcay T; Darendeliler F; Bas F; Guven A; Siklar Z; Ocal G; Berberoglu M; Murphy N; O'Sullivan M; Green A; Clayton PE; Banerjee I; Clayton PT; Hussain K; Weedon MN; Ellard S
    Am J Hum Genet; 2013 Jan; 92(1):131-6. PubMed ID: 23273570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative splicing: role of pseudoexons in human disease and potential therapeutic strategies.
    Dhir A; Buratti E
    FEBS J; 2010 Feb; 277(4):841-55. PubMed ID: 20082636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides.
    Sangermano R; Garanto A; Khan M; Runhart EH; Bauwens M; Bax NM; van den Born LI; Khan MI; Cornelis SS; Verheij JBGM; Pott JR; Thiadens AAHJ; Klaver CCW; Puech B; Meunier I; Naessens S; Arno G; Fakin A; Carss KJ; Raymond FL; Webster AR; Dhaenens CM; Stöhr H; Grassmann F; Weber BHF; Hoyng CB; De Baere E; Albert S; Collin RWJ; Cremers FPM
    Genet Med; 2019 Aug; 21(8):1751-1760. PubMed ID: 30643219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homozygosity mapping and whole-genome sequencing reveals a deep intronic PROM1 mutation causing cone-rod dystrophy by pseudoexon activation.
    Mayer AK; Rohrschneider K; Strom TM; Glöckle N; Kohl S; Wissinger B; Weisschuh N
    Eur J Hum Genet; 2016 Mar; 24(3):459-62. PubMed ID: 26153215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism and modeling of human disease-associated near-exon intronic variants that perturb RNA splicing.
    Chiang HL; Chen YT; Su JY; Lin HN; Yu CA; Hung YJ; Wang YL; Huang YT; Lin CL
    Nat Struct Mol Biol; 2022 Nov; 29(11):1043-1055. PubMed ID: 36303034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Minigene Splicing Assays and Long-Read Sequencing to Unravel Pathogenic Deep-Intronic Variants in
    Tamayo A; Núñez-Moreno G; Ruiz C; Plaisancie J; Damian A; Moya J; Chassaing N; Calvas P; Ayuso C; Minguez P; Corton M
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exonization of transposed elements: A challenge and opportunity for evolution.
    Schmitz J; Brosius J
    Biochimie; 2011 Nov; 93(11):1928-34. PubMed ID: 21787833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pseudoexons of the DMD Gene.
    Keegan NP
    J Neuromuscul Dis; 2020; 7(2):77-95. PubMed ID: 32176650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903+469T>C MTRR mutation corrects splicing and restores enzyme activity in patient cells.
    Palhais B; Præstegaard VS; Sabaratnam R; Doktor TK; Lutz S; Burda P; Suormala T; Baumgartner M; Fowler B; Bruun GH; Andersen HS; Kožich V; Andresen BS
    Nucleic Acids Res; 2015 May; 43(9):4627-39. PubMed ID: 25878036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.