BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34837493)

  • 1. Enhancing β-alanine production from glucose in genetically modified Corynebacterium glutamicum by metabolic pathway engineering.
    Wang JY; Rao ZM; Xu JZ; Zhang WG
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9153-9166. PubMed ID: 34837493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli.
    Zou X; Guo L; Huang L; Li M; Zhang S; Yang A; Zhang Y; Zhu L; Zhang H; Zhang J; Feng Z
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2545-2559. PubMed ID: 31989219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems metabolic engineering of Corynebacterium glutamicum for the efficient production of β-alanine.
    Ghiffary MR; Prabowo CPS; Adidjaja JJ; Lee SY; Kim HU
    Metab Eng; 2022 Nov; 74():121-129. PubMed ID: 36341775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.
    Xu J; Han M; Zhang J; Guo Y; Zhang W
    Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of l-Leucine Production in
    Wang YY; Zhang F; Xu JZ; Zhang WG; Chen XL; Liu LM
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31022947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Metabolic engineering of L-valine synthesis and secretory pathways in Corynebacterium glutamicum for higher production].
    Zhang H; Li Y; Wang X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1606-1619. PubMed ID: 30394028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.
    Zhang C; Zhang J; Kang Z; Du G; Chen J
    J Ind Microbiol Biotechnol; 2015 May; 42(5):787-97. PubMed ID: 25665502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rerouting Fluxes of the Central Carbon Metabolism and Relieving Mechanism-Based Inactivation of l-Aspartate-α-decarboxylase for Fermentative Production of β-Alanine in
    Li B; Zhang B; Wang P; Cai X; Chen YY; Yang YF; Liu ZQ; Zheng YG
    ACS Synth Biol; 2022 May; 11(5):1908-1918. PubMed ID: 35476404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing
    Han T; Kim GB; Lee SY
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30328-30334. PubMed ID: 33199604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer.
    Han T; Lee SY
    Metab Eng; 2023 Sep; 79():78-85. PubMed ID: 37451533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum.
    Xu JZ; Wu ZH; Gao SJ; Zhang W
    Microb Cell Fact; 2018 Jul; 17(1):105. PubMed ID: 29981572
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Zhang J; Qian F; Dong F; Wang Q; Yang J; Jiang Y; Yang S
    ACS Synth Biol; 2020 Jul; 9(7):1897-1906. PubMed ID: 32627539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid.
    Song CW; Lee J; Ko YS; Lee SY
    Metab Eng; 2015 Jul; 30():121-129. PubMed ID: 26057003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum.
    Zou Y; Chen T; Feng L; Zhang S; Xing D; Wang Z
    Biotechnol Lett; 2017 Sep; 39(9):1369-1374. PubMed ID: 28536938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum.
    Wang X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2101-2111. PubMed ID: 30663007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.
    Buchholz J; Schwentner A; Brunnenkan B; Gabris C; Grimm S; Gerstmeir R; Takors R; Eikmanns BJ; Blombach B
    Appl Environ Microbiol; 2013 Sep; 79(18):5566-75. PubMed ID: 23835179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production.
    Xu JZ; Yu HB; Han M; Liu LM; Zhang WG
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):937-949. PubMed ID: 30937555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.