These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34838096)

  • 1. Quantitative multiparametric MRI predicts response to neoadjuvant therapy in the community setting.
    Virostko J; Sorace AG; Slavkova KP; Kazerouni AS; Jarrett AM; DiCarlo JC; Woodard S; Avery S; Goodgame B; Patt D; Yankeelov TE
    Breast Cancer Res; 2021 Nov; 23(1):110. PubMed ID: 34838096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer.
    Li X; Abramson RG; Arlinghaus LR; Kang H; Chakravarthy AB; Abramson VG; Farley J; Mayer IA; Kelley MC; Meszoely IM; Means-Powell J; Grau AM; Sanders M; Yankeelov TE
    Invest Radiol; 2015 Apr; 50(4):195-204. PubMed ID: 25360603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer.
    Liang X; Chen X; Yang Z; Liao Y; Wang M; Li Y; Fan W; Dai Z; Zhang Y
    BMC Cancer; 2022 Dec; 22(1):1250. PubMed ID: 36460972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additive value of diffusion-weighted MRI in the I-SPY 2 TRIAL.
    Li W; Newitt DC; Wilmes LJ; Jones EF; Arasu V; Gibbs J; La Yun B; Li E; Partridge SC; Kornak J; ; Esserman LJ; Hylton NM
    J Magn Reson Imaging; 2019 Dec; 50(6):1742-1753. PubMed ID: 31026118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion-weighted MRI for predicting pathologic response to neoadjuvant chemotherapy in breast cancer: evaluation with mono-, bi-, and stretched-exponential models.
    Suo S; Yin Y; Geng X; Zhang D; Hua J; Cheng F; Chen J; Zhuang Z; Cao M; Xu J
    J Transl Med; 2021 Jun; 19(1):236. PubMed ID: 34078388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion and perfusion MR parameters to assess preoperative short-course radiotherapy response in locally advanced rectal cancer: a comparative explorative study among Standardized Index of Shape by DCE-MRI, intravoxel incoherent motion- and diffusion kurtosis imaging-derived parameters.
    Fusco R; Sansone M; Granata V; Grimm R; Pace U; Delrio P; Tatangelo F; Botti G; Avallone A; Pecori B; Petrillo A
    Abdom Radiol (NY); 2019 Nov; 44(11):3683-3700. PubMed ID: 30361867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early assessment of breast cancer response to neoadjuvant chemotherapy by semi-quantitative analysis of high-temporal resolution DCE-MRI: preliminary results.
    Abramson RG; Li X; Hoyt TL; Su PF; Arlinghaus LR; Wilson KJ; Abramson VG; Chakravarthy AB; Yankeelov TE
    Magn Reson Imaging; 2013 Nov; 31(9):1457-64. PubMed ID: 23954320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiparametric MRI model with dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer diagnosis with high accuracy.
    Zhang M; Horvat JV; Bernard-Davila B; Marino MA; Leithner D; Ochoa-Albiztegui RE; Helbich TH; Morris EA; Thakur S; Pinker K
    J Magn Reson Imaging; 2019 Mar; 49(3):864-874. PubMed ID: 30375702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative intravoxel incoherent motion parameters derived from whole-tumor volume for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer.
    Xu Q; Xu Y; Sun H; Chan Q; Shi K; Song A; Wang W
    J Magn Reson Imaging; 2018 Jul; 48(1):248-258. PubMed ID: 29281151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results.
    Jarrett AM; Hormuth DA; Barnes SL; Feng X; Huang W; Yankeelov TE
    Phys Med Biol; 2018 May; 63(10):105015. PubMed ID: 29697054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined T2w volumetry, DW-MRI and DCE-MRI for response assessment after neo-adjuvant chemoradiation in locally advanced rectal cancer.
    Intven M; Monninkhof EM; Reerink O; Philippens ME
    Acta Oncol; 2015 Nov; 54(10):1729-36. PubMed ID: 25914930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer using diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging.
    Xu HD; Zhang YQ
    Neoplasma; 2017; 64(3):430-436. PubMed ID: 28253722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the prediction value of multiparametric magnetic resonance imaging at 3 T in response to neoadjuvant chemotherapy in breast cancer.
    Minarikova L; Bogner W; Pinker K; Valkovič L; Zaric O; Bago-Horvath Z; Bartsch R; Helbich TH; Trattnig S; Gruber S
    Eur Radiol; 2017 May; 27(5):1901-1911. PubMed ID: 27651141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response to neoadjuvant chemoradiotherapy for locally advanced rectum cancer: Texture analysis of dynamic contrast-enhanced MRI.
    Zou HH; Yu J; Wei Y; Wu JF; Xu Q
    J Magn Reson Imaging; 2019 Mar; 49(3):885-893. PubMed ID: 30079601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy.
    Wu J; Gong G; Cui Y; Li R
    J Magn Reson Imaging; 2016 Nov; 44(5):1107-1115. PubMed ID: 27080586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting pathologic response to neoadjuvant chemotherapy in patients with locally advanced breast cancer using multiparametric MRI.
    Lu N; Dong J; Fang X; Wang L; Jia W; Zhou Q; Wang L; Wei J; Pan Y; Han X
    BMC Med Imaging; 2021 Oct; 21(1):155. PubMed ID: 34688263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning with textural analysis of longitudinal multiparametric MRI and molecular subtypes accurately predicts pathologic complete response in patients with invasive breast cancer.
    Syed A; Adam R; Ren T; Lu J; Maldjian T; Duong TQ
    PLoS One; 2023; 18(1):e0280320. PubMed ID: 36649274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of diffusion kurtosis imaging and quantitative dynamic contrast-enhanced MRI for the differentiation of breast tumors.
    Li T; Yu T; Li L; Lu L; Zhuo Y; Lian J; Xiong Y; Kong D; Li K
    J Magn Reson Imaging; 2018 Nov; 48(5):1358-1366. PubMed ID: 29717790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DW-MRI and DCE-MRI are of complementary value in predicting pathologic response to neoadjuvant chemoradiotherapy for esophageal cancer.
    Heethuis SE; Goense L; van Rossum PSN; Borggreve AS; Mook S; Voncken FEM; Bartels-Rutten A; Aleman BMP; van Hillegersberg R; Ruurda JP; Meijer GJ; Lagendijk JJW; van Lier ALHMW
    Acta Oncol; 2018 Sep; 57(9):1201-1208. PubMed ID: 29781342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.