These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 34838134)

  • 1. MERMAID: an open source automated hit-to-lead method based on deep reinforcement learning.
    Erikawa D; Yasuo N; Sekijima M
    J Cheminform; 2021 Nov; 13(1):94. PubMed ID: 34838134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional Molecule Generation with Recurrent Neural Networks.
    Grisoni F; Moret M; Lingwood R; Schneider G
    J Chem Inf Model; 2020 Mar; 60(3):1175-1183. PubMed ID: 31904964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generative Adversarial Networks for De Novo Molecular Design.
    Lee YJ; Kahng H; Kim SB
    Mol Inform; 2021 Oct; 40(10):e2100045. PubMed ID: 34622551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gargoyles: An Open Source Graph-Based Molecular Optimization Method Based on Deep Reinforcement Learning.
    Erikawa D; Yasuo N; Suzuki T; Nakamura S; Sekijima M
    ACS Omega; 2023 Oct; 8(40):37431-37441. PubMed ID: 37841174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training recurrent neural networks as generative neural networks for molecular structures: how does it impact drug discovery?
    D'Souza S; Kv P; Balaji S
    Expert Opin Drug Discov; 2022 Oct; 17(10):1071-1079. PubMed ID: 36216812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES.
    Bjerrum EJ; Margreitter C; Blaschke T; Kolarova S; de Castro RL
    J Comput Aided Mol Des; 2023 Aug; 37(8):373-394. PubMed ID: 37329395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SMILES Pair Encoding: A Data-Driven Substructure Tokenization Algorithm for Deep Learning.
    Li X; Fourches D
    J Chem Inf Model; 2021 Apr; 61(4):1560-1569. PubMed ID: 33715361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SMILES-based deep generative scaffold decorator for de-novo drug design.
    Arús-Pous J; Patronov A; Bjerrum EJ; Tyrchan C; Reymond JL; Chen H; Engkvist O
    J Cheminform; 2020 May; 12(1):38. PubMed ID: 33431013
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Staker J; Marshall K; Leswing K; Robertson T; Halls MD; Goldberg A; Morisato T; Maeshima H; Ando T; Arai H; Sasago M; Fujii E; Matsuzawa NN
    J Phys Chem A; 2022 Sep; 126(34):5837-5852. PubMed ID: 35984470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adversarial Threshold Neural Computer for Molecular de Novo Design.
    Putin E; Asadulaev A; Vanhaelen Q; Ivanenkov Y; Aladinskaya AV; Aliper A; Zhavoronkov A
    Mol Pharm; 2018 Oct; 15(10):4386-4397. PubMed ID: 29569445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UnCorrupt SMILES: a novel approach to de novo design.
    Schoenmaker L; Béquignon OJM; Jespers W; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):22. PubMed ID: 36788579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular generation by Fast Assembly of (Deep)SMILES fragments.
    Berenger F; Tsuda K
    J Cheminform; 2021 Nov; 13(1):88. PubMed ID: 34775976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CONSMI: Contrastive Learning in the Simplified Molecular Input Line Entry System Helps Generate Better Molecules.
    Qian Y; Shi M; Zhang Q
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38276573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can large language models understand molecules?
    Sadeghi S; Bui A; Forooghi A; Lu J; Ngom A
    BMC Bioinformatics; 2024 Jun; 25(1):225. PubMed ID: 38926641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Randomized SMILES strings improve the quality of molecular generative models.
    Arús-Pous J; Johansson SV; Prykhodko O; Bjerrum EJ; Tyrchan C; Reymond JL; Chen H; Engkvist O
    J Cheminform; 2019 Nov; 11(1):71. PubMed ID: 33430971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mothra: Multiobjective
    Suzuki T; Ma D; Yasuo N; Sekijima M
    J Chem Inf Model; 2024 Oct; 64(19):7291-7302. PubMed ID: 39317969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep reinforcement learning for de novo drug design.
    Popova M; Isayev O; Tropsha A
    Sci Adv; 2018 Jul; 4(7):eaap7885. PubMed ID: 30050984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GEN: highly efficient SMILES explorer using autodidactic generative examination networks.
    van Deursen R; Ertl P; Tetko IV; Godin G
    J Cheminform; 2020 Apr; 12(1):22. PubMed ID: 33430998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.