These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34838365)

  • 1. In-situ electrolytic oxygen is a feasible replacement for conventional aeration during aerobic composting.
    Fu T; Shangguan H; Wei J; Wu J; Tang J; Zeng RJ; Zhou S
    J Hazard Mater; 2022 Mar; 426():127846. PubMed ID: 34838365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ generated oxygen distribution causes maturity differentiation during electrolytic oxygen aerobic composting.
    Shangguan H; Fu T; Shen C; Mi H; Wei J; Tang J; Zhou S
    Sci Total Environ; 2022 Dec; 850():157939. PubMed ID: 35952878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the structural characteristics and molecular transformation of dissolved organic matter during the electrolytic oxygen aerobic composting process.
    Wei J; Shangguan H; Shen C; Mi H; Liu X; Fu T; Tang J; Zhou S
    Sci Total Environ; 2022 Nov; 845():157174. PubMed ID: 35809732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field induces electron flow to simultaneously enhance the maturity of aerobic composting and mitigate greenhouse gas emissions.
    Tang J; Li X; Zhao W; Wang Y; Cui P; Zeng RJ; Yu L; Zhou S
    Bioresour Technol; 2019 May; 279():234-242. PubMed ID: 30735933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of phosphogypsum and medical stone on nitrogen transformation, nitrogen functional genes, and bacterial community during aerobic composting.
    Lei L; Gu J; Wang X; Song Z; Yu J; Wang J; Dai X; Zhao W
    Sci Total Environ; 2021 Jan; 753():141746. PubMed ID: 33207482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of aeration on volatile sulfur compounds (VSCs) and NH
    Zhang H; Li G; Gu J; Wang G; Li Y; Zhang D
    Waste Manag; 2016 Dec; 58():369-375. PubMed ID: 27595496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternating magnetic field mitigates N
    Wu J; Shangguan H; Fu T; Chen J; Tang J; Zeng RJ; Ye W; Zhou S
    J Hazard Mater; 2021 Mar; 406():124329. PubMed ID: 33158658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field-assisted aerobic co-composting of chicken manure and kitchen waste: Ammonia mitigation and maturation enhancement.
    Shen C; Shangguan H; Fu T; Mi H; Lin H; Huang L; Tang J
    Bioresour Technol; 2024 Jan; 391(Pt A):129931. PubMed ID: 37898369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen retention and emissions during membrane-covered aerobic composting for kitchen waste disposal.
    Li F; Yuan Q; Li M; Zhou J; Gao H; Hu N
    Environ Technol; 2023 Sep; ():1-11. PubMed ID: 37615415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of aeration/micro-aeration on lignocellulosic decomposition, maturity and seedling phytotoxicity during full-scale biogas residues composting.
    Meng X; Wang Q; Zhao X; Cai Y; Fu J; Zhu M; Ma X; Wang P; Liu R; Wang Y; Liu W; Ren L
    Waste Manag; 2023 Aug; 168():246-255. PubMed ID: 37327518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrification plays a key role in N
    Tang J; Li X; Cui P; Lin J; Jianxiong Zeng R; Lin H; Zhou S
    Bioresour Technol; 2020 Feb; 297():122470. PubMed ID: 31791916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of functional-membrane covering technique on nitrogen succession during aerobic composting: Metabolic pathways, functional enzymes, and functional genes.
    Xiong J; Su Y; He X; Han L; Guo J; Qiao W; Huang G
    Bioresour Technol; 2022 Jun; 354():127205. PubMed ID: 35462015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the synergistic effects of conductive biochar for accelerating maturation during electric field-assisted aerobic composting.
    Fu T; Shangguan H; Wu J; Tang J; Yuan H; Zhou S
    Bioresour Technol; 2021 Oct; 337():125359. PubMed ID: 34126360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigation of NH
    Li D; Manu MK; Varjani S; Wong JWC
    Bioresour Technol; 2022 Sep; 359():127465. PubMed ID: 35700892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter.
    Agyarko-Mintah E; Cowie A; Singh BP; Joseph S; Van Zwieten L; Cowie A; Harden S; Smillie R
    Waste Manag; 2017 Mar; 61():138-149. PubMed ID: 27940078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-composting of municipal solid waste mixed with matured sewage sludge: The relationship between N
    Bian R; Sun Y; Li W; Ma Q; Chai X
    Chemosphere; 2017 Dec; 189():581-589. PubMed ID: 28963975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of Nano-membrane on Aerobic Composting Process and Odor Emission of Livestock Manure].
    Li YS; Sun B; Chen JH; Peng XW; Bai ZH; Zhuang XL
    Huan Jing Ke Xue; 2021 Nov; 42(11):5554-5562. PubMed ID: 34708995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen dynamics, organic matter degradation and main gas emissions during pig manure composting: Effect of intermittent aeration.
    Zeng J; Shen X; Yin H; Sun X; Dong H; Huang G
    Bioresour Technol; 2022 Oct; 361():127697. PubMed ID: 35905876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture.
    Shen Y; Ren L; Li G; Chen T; Guo R
    Waste Manag; 2011 Jan; 31(1):33-8. PubMed ID: 20888749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of solar-heated aeration and greenhouse in grass composting.
    Poblete R; Salihoglu G; Salihoglu NK
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):26807-26818. PubMed ID: 33501574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.