These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 34838385)
1. Valorization of vinasse and whey to protein and biogas through an environmental fungi-based biorefinery. Hashemi SS; Karimi K; Taherzadeh MJ J Environ Manage; 2022 Feb; 303():114138. PubMed ID: 34838385 [TBL] [Abstract][Full Text] [Related]
2. Integrated process for protein, pigments, and biogas production from baker's yeast wastewater using filamentous fungi. Sajad Hashemi S; Karimi K; Taherzadeh MJ Bioresour Technol; 2021 Oct; 337():125356. PubMed ID: 34102516 [TBL] [Abstract][Full Text] [Related]
3. Valorization of sugar-to-ethanol process waste vinasse: A novel biorefinery approach using edible ascomycetes filamentous fungi. Nair RB; Taherzadeh MJ Bioresour Technol; 2016 Dec; 221():469-476. PubMed ID: 27668880 [TBL] [Abstract][Full Text] [Related]
4. Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Nitayavardhana S; Issarapayup K; Pavasant P; Khanal SK Bioresour Technol; 2013 Apr; 133():301-6. PubMed ID: 23434806 [TBL] [Abstract][Full Text] [Related]
5. Innovative biorefinery concept for sugar-based ethanol industries: production of protein-rich fungal biomass on vinasse as an aquaculture feed ingredient. Nitayavardhana S; Khanal SK Bioresour Technol; 2010 Dec; 101(23):9078-85. PubMed ID: 20688513 [TBL] [Abstract][Full Text] [Related]
6. Biomethane production by thermophilic co-digestion of sugarcane vinasse and whey in an AnSBBR: Effects of composition, organic load, feed strategy and temperature. Albuquerque JN; Ratusznei SM; Rodrigues JAD J Environ Manage; 2019 Dec; 251():109606. PubMed ID: 31563047 [TBL] [Abstract][Full Text] [Related]
7. Biogas from mono- and co-digestion of microalgal biomass grown on piggery wastewater. Carminati P; Gusmini D; Pizzera A; Catenacci A; Parati K; Ficara E Water Sci Technol; 2018 Aug; 78(1-2):103-113. PubMed ID: 30101793 [TBL] [Abstract][Full Text] [Related]
8. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
9. Methane Production by Co-Digesting Vinasse and Whey in an AnSBBR: Effect of Mixture Ratio and Feed Strategy. Lovato G; Albanez R; Triveloni M; Ratusznei SM; Rodrigues JAD Appl Biochem Biotechnol; 2019 Jan; 187(1):28-46. PubMed ID: 29882192 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic Biological Treatment of Vinasse for Environmental Compliance and Methane Production. Albanez R; Chiaranda BC; Ferreira RG; França AL; Honório CD; Rodrigues JA; Ratusznei SM; Zaiat M Appl Biochem Biotechnol; 2016 Jan; 178(1):21-43. PubMed ID: 26400496 [TBL] [Abstract][Full Text] [Related]
11. In situ biogas upgrading and enhancement of anaerobic digestion of cheese whey by addition of scrap or powder zero-valent iron (ZVI). Charalambous P; Vyrides I J Environ Manage; 2021 Feb; 280():111651. PubMed ID: 33221048 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Escalante H; Castro L; Amaya MP; Jaimes L; Jaimes-Estévez J Waste Manag; 2018 Jan; 71():711-718. PubMed ID: 29017872 [TBL] [Abstract][Full Text] [Related]
13. Use of anaerobic co-digestion as an alternative to add value to sugarcane biorefinery wastes. Adarme OFH; Baêta BEL; Filho JBG; Gurgel LVA; Aquino SF Bioresour Technol; 2019 Sep; 287():121443. PubMed ID: 31103937 [TBL] [Abstract][Full Text] [Related]
14. Improvement of Sugarcane Stillage (Vinasse) Anaerobic Digestion with Cheese Whey as its Co-substrate: Achieving High Methane Productivity and Yield. Sousa SP; Lovato G; Albanez R; Ratusznei SM; Rodrigues JAD Appl Biochem Biotechnol; 2019 Nov; 189(3):987-1006. PubMed ID: 31161380 [TBL] [Abstract][Full Text] [Related]
15. Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment. Marques SS; Nascimento IA; de Almeida PF; Chinalia FA Appl Biochem Biotechnol; 2013 Dec; 171(8):1933-43. PubMed ID: 24013860 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of bioenergy recovery from agricultural wastes through recycling of cellulosic alcoholic fermentation vinasse for anaerobic co-digestion. Meng L; Jin K; Yi R; Chen M; Peng J; Pan Y Bioresour Technol; 2020 Sep; 311():123511. PubMed ID: 32417660 [TBL] [Abstract][Full Text] [Related]
17. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid. Ho L; Ho G Water Res; 2012 Sep; 46(14):4339-50. PubMed ID: 22739499 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor. Cabrera-Díaz A; Pereda-Reyes I; Oliva-Merencio D; Lebrero R; Zaiat M Appl Biochem Biotechnol; 2017 Dec; 183(4):1127-1145. PubMed ID: 28516416 [TBL] [Abstract][Full Text] [Related]
19. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Serejo ML; Posadas E; Boncz MA; Blanco S; García-Encina P; Muñoz R Environ Sci Technol; 2015 Mar; 49(5):3228-36. PubMed ID: 25675110 [TBL] [Abstract][Full Text] [Related]
20. Wastes valorization from Rhodosporidium toruloides NCYC 921 production and biorefinery by anaerobic digestion. Batista AP; López EP; Dias C; Lopes da Silva T; Marques IP Bioresour Technol; 2017 Feb; 226():108-117. PubMed ID: 27992793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]