BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 34838625)

  • 1. The effect of co-pyrolysis temperature for iron-biochar composites on their adsorption behavior of antimonite and antimonate in aqueous solution.
    Zhang L; Dong Y; Liu J; Liu C; Liu W; Lin H
    Bioresour Technol; 2022 Mar; 347():126362. PubMed ID: 34838625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of antimonite and antimonate in aqueous solution by mugwort biochar modified by Acidithiobacillus ferrooxidans after pyrolysis.
    Liu X; Xin S; Wang B; Yuan Y; Chu J; He Y; Zhang X; Wang S
    Bioresour Technol; 2023 Jul; 380():129113. PubMed ID: 37137450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promotion of higher synthesis temperature for higher-efficient removal of antimonite and antimonate in aqueous solution by iron-loaded porous biochar.
    Zhang L; Dong Y; Liu J; Liu W; Lu Y; Lin H
    Bioresour Technol; 2022 Nov; 363():127889. PubMed ID: 36067894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: Performance and mechanisms.
    Xu R; Li Q; Nan X; Yang Y; Xu B; Li K; Wang L; Zhang Y; Jiang T
    J Hazard Mater; 2022 Jan; 422():126821. PubMed ID: 34419843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight.
    He X; Min X; Peng T; Ke Y; Zhao F; Sillanpää M; Wang Y
    Environ Sci Pollut Res Int; 2020 May; 27(14):16484-16495. PubMed ID: 32124299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms.
    Chen H; Gao Y; El-Naggar A; Niazi NK; Sun C; Shaheen SM; Hou D; Yang X; Tang Z; Liu Z; Hou H; Chen W; Rinklebe J; Pohořelý M; Wang H
    J Hazard Mater; 2022 Mar; 425():127971. PubMed ID: 34894506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and immobilization performance of pine-cone pristine and engineered biochars for antimony in aqueous solution and military shooting range soil: An integrated novel approach.
    Khan BA; Ahmad M; Iqbal S; Ullah F; Bolan N; Solaiman ZM; Shafique MA; Siddique KHM
    Environ Pollut; 2023 Jan; 317():120723. PubMed ID: 36436664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions.
    Vithanage M; Rajapaksha AU; Ahmad M; Uchimiya M; Dou X; Alessi DS; Ok YS
    J Environ Manage; 2015 Mar; 151():443-9. PubMed ID: 25602696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trivalent antimony removal using carbonaceous nanomaterial loaded with zero-valent bimetal (iron/copper) and their effect on seed growth.
    Ji J; Xu S; Ma Z; Mou Y
    Chemosphere; 2022 Jun; 296():134047. PubMed ID: 35183581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous adsorption and oxidation of antimonite onto nano zero-valent iron sludge-based biochar: Indispensable role of reactive oxygen species and redox-active moieties.
    Wei D; Li B; Luo L; Zheng Y; Huang L; Zhang J; Yang Y; Huang H
    J Hazard Mater; 2020 Jun; 391():122057. PubMed ID: 32044627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled sorptive and oxidative antimony(III) removal by iron-modified biochar: Mechanisms of electron-donating capacity and reactive Fe species.
    Gao Y; Chen H; Fang Z; Niazi NK; Adusei-Fosu K; Li J; Yang X; Liu Z; Bolan NS; Gao B; Hou D; Sun C; Meng J; Chen W; Quin BF; Wang H
    Environ Pollut; 2023 Nov; 337():122637. PubMed ID: 37769707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An iron-biochar composite from co-pyrolysis of incinerated sewage sludge ash and peanut shell for arsenic removal: Role of silica.
    Wang Q; Li JS; Poon CS
    Environ Pollut; 2022 Nov; 313():120115. PubMed ID: 36122654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar.
    Jia X; Zhou J; Liu J; Liu P; Yu L; Wen B; Feng Y
    Sci Total Environ; 2020 Jul; 724():138158. PubMed ID: 32247137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Sb(V) removal from aqueous solution using phosphogypsum-modified biochar.
    Li L; Liao L; Wang B; Li W; Liu T; Wu P; Xu Q; Liu S
    Environ Pollut; 2022 May; 301():119032. PubMed ID: 35217137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution.
    Dong J; Shen L; Shan S; Liu W; Qi Z; Liu C; Gao X
    Sci Total Environ; 2022 Feb; 806(Pt 4):151442. PubMed ID: 34742966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced adsorption for trivalent antimony by nano-zero-valent iron-loaded biochar: performance, mechanism, and sustainability.
    Ma S; Ji J; Mou Y; Shen X; Xu S
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):112536-112547. PubMed ID: 37831269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of antimonite (Sb(III)) from aqueous solution using a magnetic iron-modified carbon nanotubes (CNTs) composite: Experimental observations and governing mechanisms.
    Cheng Z; Lyu H; Shen B; Tian J; Sun Y; Wu C
    Chemosphere; 2022 Feb; 288(Pt 2):132581. PubMed ID: 34656624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction and removal of As(Ⅴ) in aqueous solution by biochar derived from nano zero-valent-iron (nZVI) and sewage sludge.
    Liu L; Zhao J; Liu X; Bai S; Lin H; Wang D
    Chemosphere; 2021 Aug; 277():130273. PubMed ID: 33770694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of antimonite and antimonate from water using Fe-based metal-organic frameworks: The relationship between framework structure and adsorption performance.
    Zhang W; Li N; Xiao T; Tang W; Xiu G
    J Environ Sci (China); 2019 Dec; 86():213-224. PubMed ID: 31787186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis temperature and feedstock affected Cr(VI) removal capacity of sulfidated zerovalent iron: Importance of surface area and electrical conductivity.
    Zhao C; Liu L; Yang X; Liu C; Wang B; Mao X; Zhang J; Shi J; Yin W; Wang X; Wang S
    Chemosphere; 2022 Jun; 296():133927. PubMed ID: 35167834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.