BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34838625)

  • 41. Synthesis of co-pyrolyzed biochar using red mud and peanut shell for removing phosphate from pickling wastewater: Performance and mechanism.
    Zhang C; Dong Y; Yang D; Jin Q; Lin H
    Chemosphere; 2023 Aug; 331():138841. PubMed ID: 37142105
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal.
    Song J; Zhang S; Li G; Du Q; Yang F
    J Hazard Mater; 2020 Jun; 391():121692. PubMed ID: 32062342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ciprofloxacin adsorption by biochar derived from co-pyrolysis of sewage sludge and bamboo waste.
    Li J; Yu G; Pan L; Li C; You F; Wang Y
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):22806-22817. PubMed ID: 32319068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative removal of As(V) and Sb(V) from aqueous solution by sulfide-modified α-FeOOH.
    Li Q; Li R; Ma X; Sarkar B; Sun X; Bolan N
    Environ Pollut; 2020 Dec; 267():115658. PubMed ID: 33254705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous stabilization of Sb and As co-contaminated soil by FeMg modified biochar.
    Jiao Y; Wang T; He M; Liu X; Lin C; Ouyang W
    Sci Total Environ; 2022 Jul; 830():154831. PubMed ID: 35346707
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aqueous Cr(VI) removal by a novel ball milled Fe
    Wang K; Sun Y; Tang J; He J; Sun H
    Chemosphere; 2020 Feb; 241():125044. PubMed ID: 31683426
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pyrolysis of penicillin fermentation residue and sludge to produce biochar: Antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water.
    Wang Q; Zhang Z; Xu G; Li G
    J Hazard Mater; 2021 Jul; 413():125385. PubMed ID: 33611034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Manganese oxide-modified biochar derived from discarded mushroom-stick for the removal of Sb(III) from aqueous solution.
    Mao W; Wu P; Zhang Y; Lai K; Dong L; Qian X; Zhang Y; Zhu J
    Environ Sci Pollut Res Int; 2022 Jul; 29(32):49322-49334. PubMed ID: 35220532
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effective removal and recovery of antimony using metal-loaded saponified orange waste.
    Biswas BK; Inoue J; Kawakita H; Ohto K; Inoue K
    J Hazard Mater; 2009 Dec; 172(2-3):721-8. PubMed ID: 19726128
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.
    Vithanage M; Rajapaksha AU; Dou X; Bolan NS; Yang JE; Ok YS
    J Colloid Interface Sci; 2013 Sep; 406():217-24. PubMed ID: 23791229
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution.
    Zhu L; Tong L; Zhao N; Li J; Lv Y
    Chemosphere; 2019 Mar; 219():493-503. PubMed ID: 30551116
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synergetic removal of thallium and antimony from wastewater with jacobsite-biochar-persulfate system.
    Liu J; Wei X; Ren S; Qi J; Cao J; Wang J; Wan Y; Liu Y; Zhao M; Wang L; Xiao T
    Environ Pollut; 2022 Jul; 304():119196. PubMed ID: 35341819
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution.
    Tan Y; Wan X; Zhou T; Wang L; Yin X; Ma A; Wang N
    J Hazard Mater; 2022 Feb; 424(Pt A):127349. PubMed ID: 34879556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water.
    Wang B; Lian G; Lee X; Gao B; Li L; Liu T; Zhang X; Zheng Y
    Chemosphere; 2020 Jan; 238():124684. PubMed ID: 31524621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antimonate sequestration from aqueous solution using zirconium, iron and zirconium-iron modified biochars.
    Rahman MA; Rahman MM; Bahar MM; Sanderson P; Lamb D
    Sci Rep; 2021 Apr; 11(1):8113. PubMed ID: 33854093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical CNT filter functionalized with metal-organic framework for one-step antimonite decontamination.
    Tian F; Ren Y; Wu W; Liu Y
    Chemosphere; 2023 Sep; 335():139047. PubMed ID: 37263511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal.
    He R; Peng Z; Lyu H; Huang H; Nan Q; Tang J
    Sci Total Environ; 2018 Jan; 612():1177-1186. PubMed ID: 28892862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution.
    Khan ZH; Gao M; Qiu W; Islam MS; Song Z
    Chemosphere; 2020 May; 246():125701. PubMed ID: 31891847
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation and characterization of iron-copper binary oxide and its effective removal of antimony(III) from aqueous solution.
    Li Y; Geng B; Hu X; Ren B; Hursthouse AS
    Water Sci Technol; 2016; 74(2):393-401. PubMed ID: 27438244
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced reductive dechlorination of 1,1,1-trichloroethane using zero-valent iron-biochar-carrageenan microspheres: preparation and microcosm study.
    Ji C; Meng L; Wang H
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):30584-30595. PubMed ID: 29349739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.