These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34838926)

  • 1. Comparison of the effects of intracerebroventricular administration of glucagon-like peptides 1 and 2 on hypothalamic appetite regulating factors and sleep-like behavior in chicks.
    Kewan A; Shimatani T; Saneyasu T; Kamisoyama H; Honda K
    Neurosci Lett; 2022 Jan; 768():136362. PubMed ID: 34838926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracerebroventricular administration of chicken glucagon-like peptide-2 potently suppresses food intake in chicks.
    Honda K; Saneyasu T; Shimatani T; Aoki K; Yamaguchi T; Nakanishi K; Kamisoyama H
    Anim Sci J; 2015 Mar; 86(3):312-8. PubMed ID: 25410738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute effects of glucagon-like peptide-1 on hypothalamic neuropeptide and AMP activated kinase expression in fasted rats.
    Seo S; Ju S; Chung H; Lee D; Park S
    Endocr J; 2008 Oct; 55(5):867-74. PubMed ID: 18506089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in the Evolution and Sequences of Proglucagon and the Receptors for Proglucagon-Derived Peptides in Mammals.
    Irwin DM
    Front Endocrinol (Lausanne); 2021; 12():700066. PubMed ID: 34322093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracerebroventricular administration of novel glucagon-like peptide suppresses food intake in chicks.
    Honda K; Saneyasu T; Yamaguchi T; Shimatani T; Aoki K; Nakanishi K; Kamisoyama H
    Peptides; 2014 Feb; 52():98-103. PubMed ID: 24361510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracerebroventricular administration of chicken oxyntomodulin suppresses food intake and increases plasma glucose and corticosterone concentrations in chicks.
    Honda K; Saneyasu T; Yamaguchi T; Shimatani T; Aoki K; Nakanishi K; Kamisoyama H
    Neurosci Lett; 2014 Apr; 564():57-61. PubMed ID: 24530259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport.
    Lee J; Koehler J; Yusta B; Bahrami J; Matthews D; Rafii M; Pencharz PB; Drucker DJ
    Mol Metab; 2017 Mar; 6(3):245-255. PubMed ID: 28271031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT-2, and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonists as an inhibitory signal for food and water intake.
    Navarro M; Rodriquez de Fonseca F; Alvarez E; Chowen JA; Zueco JA; Gomez R; Eng J; Blázquez E
    J Neurochem; 1996 Nov; 67(5):1982-91. PubMed ID: 8863504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucagon-like peptide-2 directly regulates hypothalamic neurons expressing neuropeptides linked to appetite control in vivo and in vitro.
    Dalvi PS; Belsham DD
    Endocrinology; 2012 May; 153(5):2385-97. PubMed ID: 22416082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucagon-related peptides and the regulation of food intake in chickens.
    Honda K
    Anim Sci J; 2016 Sep; 87(9):1090-8. PubMed ID: 27150835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure.
    Baggio LL; Huang Q; Brown TJ; Drucker DJ
    Gastroenterology; 2004 Aug; 127(2):546-58. PubMed ID: 15300587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central administration of glucagon suppresses food intake in chicks.
    Honda K; Kamisoyama H; Saito N; Kurose Y; Sugahara K; Hasegawa S
    Neurosci Lett; 2007 Apr; 416(2):198-201. PubMed ID: 17324515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticotropin-releasing factor is a downstream mediator of the beta-melanocyte-stimulating hormone-induced anorexigenic pathway in chicks.
    Kamisoyama H; Honda K; Saneyasu T; Sugahara K; Hasegawa S
    Neurosci Lett; 2009 Jul; 458(3):102-5. PubMed ID: 19393716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GLP-2 receptor signaling controls circulating bile acid levels but not glucose homeostasis in Gcgr
    Patel A; Yusta B; Matthews D; Charron MJ; Seeley RJ; Drucker DJ
    Mol Metab; 2018 Oct; 16():45-54. PubMed ID: 29937214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The endogenous preproglucagon system is not essential for gut growth homeostasis in mice.
    Wismann P; Barkholt P; Secher T; Vrang N; Hansen HB; Jeppesen PB; Baggio LL; Koehler JA; Drucker DJ; Sandoval DA; Jelsing J
    Mol Metab; 2017 Jul; 6(7):681-692. PubMed ID: 28702324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis.
    Guan X
    Am J Physiol Regul Integr Comp Physiol; 2014 Sep; 307(6):R585-96. PubMed ID: 24990862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracerebroventricular injection of glucagon-like peptide-1 changes lipid metabolism in chicks.
    Tachibana T; Oikawa D; Adachi N; Boswell T; Furuse M
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):1104-8. PubMed ID: 17466552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracerebroventricular injection of glucagon-like peptide-1 decreases monoamine concentrations in the hypothalamus of chicks.
    Tachibana T; Tanaka S; Furuse M; Hasegawa S; Kato H; Sugahara K
    Br Poult Sci; 2002 Mar; 43(1):122-6. PubMed ID: 12003328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central administration of insulin suppresses food intake in chicks.
    Honda K; Kamisoyama H; Saneyasu T; Sugahara K; Hasegawa S
    Neurosci Lett; 2007 Aug; 423(2):153-7. PubMed ID: 17693022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracerebroventricular injection of mammalian and chicken glucagon-like peptide-1 inhibits food intake of the neonatal chick.
    Furuse M; Matsumoto M; Okumura J; Sugahara K; Hasegawa S
    Brain Res; 1997 Apr; 755(1):167-9. PubMed ID: 9163555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.