These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering. Du L; Wu X Artif Organs; 2011 Jul; 35(7):691-705. PubMed ID: 21501189 [TBL] [Abstract][Full Text] [Related]
4. A novel serum: Electrophoresis method to prepare acellular corneal matrix as an artificial corneal scaffold. Li Q; Xie C; Wang H; Zhang F; Mu L Int J Artif Organs; 2020 Feb; 43(2):127-136. PubMed ID: 32000591 [TBL] [Abstract][Full Text] [Related]
5. Development of a decellularized porcine bone graft by supercritical carbon dioxide extraction technology for bone regeneration. Chen YW; Hsieh DJ; Periasamy S; Yen KC; Wang HC; Chien HH J Tissue Eng Regen Med; 2021 Apr; 15(4):401-414. PubMed ID: 33625772 [TBL] [Abstract][Full Text] [Related]
6. Reconstruction of corneal stroma with decellularized porcine xenografts in a rabbit model. Yoeruek E; Bayyoud T; Maurus C; Hofmann J; Spitzer MS; Bartz-Schmidt KU; Szurman P Acta Ophthalmol; 2012 May; 90(3):e206-10. PubMed ID: 22136520 [TBL] [Abstract][Full Text] [Related]
7. Reconstruction of a tissue-engineered cornea with porcine corneal acellular matrix as the scaffold. Fu Y; Fan X; Chen P; Shao C; Lu W Cells Tissues Organs; 2010; 191(3):193-202. PubMed ID: 19690400 [TBL] [Abstract][Full Text] [Related]
8. In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Sasaki S; Funamoto S; Hashimoto Y; Kimura T; Honda T; Hattori S; Kobayashi H; Kishida A; Mochizuki M Mol Vis; 2009 Oct; 15():2022-8. PubMed ID: 19844587 [TBL] [Abstract][Full Text] [Related]
9. Development of Decellularized Cornea by Organic Acid Treatment for Corneal Regeneration. Lin HJ; Wang TJ; Li TW; Chang YY; Sheu MT; Huang YY; Liu DZ Tissue Eng Part A; 2019 Apr; 25(7-8):652-662. PubMed ID: 30244654 [TBL] [Abstract][Full Text] [Related]
10. Development and Characterization of an Acellular Porcine Small Intestine Submucosa Scaffold for Use in Corneal Epithelium Tissue Engineering. Wang F; Song Q; Du L; Wu X Curr Eye Res; 2020 Feb; 45(2):134-143. PubMed ID: 31514545 [No Abstract] [Full Text] [Related]
11. Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Yoeruek E; Bayyoud T; Maurus C; Hofmann J; Spitzer MS; Bartz-Schmidt KU; Szurman P Acta Ophthalmol; 2012 Mar; 90(2):e125-31. PubMed ID: 22136333 [TBL] [Abstract][Full Text] [Related]
12. Scaffold-based tissue engineering: Supercritical carbon dioxide as an alternative method for decellularization and sterilization of dense materials. de Wit RJJ; van Dis DJ; Bertrand ME; Tiemessen D; Siddiqi S; Oosterwijk E; Verhagen AFTM Acta Biomater; 2023 Jan; 155():323-332. PubMed ID: 36423818 [TBL] [Abstract][Full Text] [Related]
13. Supercritical carbon dioxide-decellularized arteries exhibit physiologic-like vessel regeneration following xenotransplantation in rats. Sung SY; Lin YW; Wu CC; Lin CY; Hsu PS; Periasamy S; Nagarajan B; Hsieh DJ; Tsai YT; Tsai CS; Lin FY Biomater Sci; 2023 Mar; 11(7):2566-2580. PubMed ID: 36789647 [TBL] [Abstract][Full Text] [Related]
14. Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea. Liu XN; Zhu XP; Wu J; Wu ZJ; Yin Y; Xiao XH; Su X; Kong B; Pan SY; Yang H; Cheng Y; An N; Mi SL Int J Ophthalmol; 2016; 9(3):325-31. PubMed ID: 27158598 [TBL] [Abstract][Full Text] [Related]
15. Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn. Luo H; Lu Y; Wu T; Zhang M; Zhang Y; Jin Y Biomaterials; 2013 Sep; 34(28):6748-59. PubMed ID: 23764112 [TBL] [Abstract][Full Text] [Related]
16. Supercritical Carbon Dioxide Decellularization of Porcine Nerve Matrix for Regenerative Medicine. Le LTT; Pham NC; Trinh XT; Nguyen NG; Nguyen VL; Nam SY; Heo CY Tissue Eng Part A; 2024 Aug; 30(15-16):447-459. PubMed ID: 38205627 [TBL] [Abstract][Full Text] [Related]
17. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes. Pang K; Du L; Wu X Biomaterials; 2010 Oct; 31(28):7257-65. PubMed ID: 20598368 [TBL] [Abstract][Full Text] [Related]
18. Decellularization methods for developing porcine corneal xenografts and future perspectives. Isidan A; Liu S; Li P; Lashmet M; Smith LJ; Hara H; Cooper DKC; Ekser B Xenotransplantation; 2019 Nov; 26(6):e12564. PubMed ID: 31659811 [TBL] [Abstract][Full Text] [Related]
19. Integration and remodelling of a collagen anterior lamellar keratoplasty graft in an animal model - A preliminary report. Zhang J; Ziaei M; McKelvie J; McGhee CNJ; Patel DV Exp Eye Res; 2021 Aug; 209():108661. PubMed ID: 34102207 [TBL] [Abstract][Full Text] [Related]
20. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Alio del Barrio JL; Chiesa M; Garagorri N; Garcia-Urquia N; Fernandez-Delgado J; Bataille L; Rodriguez A; Arnalich-Montiel F; Zarnowski T; Álvarez de Toledo JP; Alio JL; De Miguel MP Exp Eye Res; 2015 Mar; 132():91-100. PubMed ID: 25625506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]