These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34839848)
1. Mechanism of FIB-Induced Phase Transformation in Austenitic Steel. Michael JR; Giannuzzi LA; Burke MG; Zhong XL Microsc Microanal; 2022 Feb; 28(1):70-82. PubMed ID: 34839848 [TBL] [Abstract][Full Text] [Related]
2. Focused Ion Beam-Induced Displacive Phase Transformation From Austenite to Martensite during Fabrication of Quenched and Partitioned Steel Micro-Pillar. Seo EJ; Cho L; Kim JK; Mola J; Zhao L; Lee S; De Cooman BC J Alloys Compd; 2020; 812():. PubMed ID: 32116412 [TBL] [Abstract][Full Text] [Related]
3. Microstructure Evolution and Orientation Relationship of Reverted Austenite in 13Cr Supermartensitic Stainless Steel During the Tempering Process. Zhang Y; Zhang C; Yuan X; Li D; Yin Y; Li S Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30781433 [TBL] [Abstract][Full Text] [Related]
4. Advantageous Implications of Reversed Austenite for the Tensile Properties of Super 13Cr Martensitic Stainless Steel. Wang P; Zheng W; Yu X; Wang Y Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363289 [TBL] [Abstract][Full Text] [Related]
6. In situ 3D crystallographic characterization of deformation-induced martensitic transformation in a metastable Fe-Cr-Ni austenitic alloy by X-ray microtomography. Takakuwa O; Iwano T; Hirayama K; Toda H; Takeuchi A; Uesugi M Sci Rep; 2024 Jun; 14(1):14445. PubMed ID: 38910158 [TBL] [Abstract][Full Text] [Related]
7. Investigation of Parent Austenite Grains from Martensite Structure Using EBSD in a Wear Resistant Steel. Gyhlesten Back J; Engberg G Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772813 [TBL] [Abstract][Full Text] [Related]
8. Phase Transformation in 316L Austenitic Steel Induced by Fracture at Cryogenic Temperatures: Experiment and Modelling. Nalepka K; Skoczeń B; Ciepielowska M; Schmidt R; Tabin J; Schmidt E; Zwolińska-Faryj W; Chulist R Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396788 [TBL] [Abstract][Full Text] [Related]
9. Effect of Reverse-phase Transformation Annealing Process on Microstructure and Mechanical Properties of Medium Manganese Steel. Zhao Y; Fan L; Lu B Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200617 [TBL] [Abstract][Full Text] [Related]
10. Development of in situ observation technique using scanning ion microscopy and demonstration of Mn depletion effect on intragranular ferrite transformation in low-alloy steel. Shigesato G; Sugiyama M J Electron Microsc (Tokyo); 2002; 51(6):359-67. PubMed ID: 12630779 [TBL] [Abstract][Full Text] [Related]
11. Deformation behavior of duplex austenite and Kwon KH; Suh BC; Baik SI; Kim YW; Choi JK; Kim NJ Sci Technol Adv Mater; 2013 Feb; 14(1):014204. PubMed ID: 27877552 [TBL] [Abstract][Full Text] [Related]
13. Influence of Carbon on the Microstructure Evolution and Hardness of Fe-13Cr-xC (x = 0-0.7 wt.%) Stainless Steel. Harwarth M; Brauer A; Huang Q; Pourabdoli M; Mola J Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501153 [TBL] [Abstract][Full Text] [Related]
14. Ion-irradiation-assisted phase selection in single crystalline Fe7Pd3 ferromagnetic shape memory alloy thin films: from fcc to bcc along the Nishiyama-Wassermann path. Arabi-Hashemi A; Mayr SG Phys Rev Lett; 2012 Nov; 109(19):195704. PubMed ID: 23215403 [TBL] [Abstract][Full Text] [Related]
15. Comparison of xenon and gallium sources on the detection and mapping of lithium in Li-containing materials by using ToF-SIMS combined FIB-SEM. Dermenci KB; Tesařová H; Šamořil T; Turan S J Microsc; 2020 Jan; 277(1):42-48. PubMed ID: 31855279 [TBL] [Abstract][Full Text] [Related]
16. Controllable Martensite Transformation and Strain-Controlled Fatigue Behavior of a Gradient Nanostructured Austenite Stainless Steel. Lei Y; Xu J; Wang Z Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443701 [TBL] [Abstract][Full Text] [Related]
17. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel. Hu CY; Somani MC; Misra RDK; Yang CG J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Surface Modification of 347 Stainless Steel upon Shot Peening. Li K; Zheng Q; Li C; Shao B; Guo D; Chen D; Sun J; Dong J; Cao P; Shin K Scanning; 2017; 2017():2189614. PubMed ID: 29379582 [TBL] [Abstract][Full Text] [Related]
19. Formation of Nanospikes on AISI 420 Martensitic Stainless Steel under Gallium Ion Bombardment. Cenev Z; Bartenwerfer M; Klauser W; Jokinen V; Fatikow S; Zhou Q Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31635089 [TBL] [Abstract][Full Text] [Related]
20. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel. Dong H; Li ZC; Somani MC; Misra RDK J Mech Behav Biomed Mater; 2021 Jul; 119():104489. PubMed ID: 33780850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]