These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 34839916)
1. Predictive surface complexation model of the calcite-aqueous solution interface: The impact of high concentration and complex composition of brines. Vinogradov J; Hidayat M; Sarmadivaleh M; Derksen J; Vega-Maza D; Iglauer S; Jougnot D; Azaroual M; Leroy P J Colloid Interface Sci; 2022 Mar; 609():852-867. PubMed ID: 34839916 [TBL] [Abstract][Full Text] [Related]
2. Zeta potential of artificial and natural calcite in aqueous solution. Al Mahrouqi D; Vinogradov J; Jackson MD Adv Colloid Interface Sci; 2017 Feb; 240():60-76. PubMed ID: 28063520 [TBL] [Abstract][Full Text] [Related]
3. Surface complexation modeling of calcite zeta potential measurements in brines with mixed potential determining ions (Ca Song J; Zeng Y; Wang L; Duan X; Puerto M; Chapman WG; Biswal SL; Hirasaki GJ J Colloid Interface Sci; 2017 Nov; 506():169-179. PubMed ID: 28735190 [TBL] [Abstract][Full Text] [Related]
4. Influence of surface conductivity on the apparent zeta potential of calcite. Li S; Leroy P; Heberling F; Devau N; Jougnot D; Chiaberge C J Colloid Interface Sci; 2016 Apr; 468():262-275. PubMed ID: 26852350 [TBL] [Abstract][Full Text] [Related]
5. The Impact of Salinity on the Interfacial Structuring of an Aromatic Acid at the Calcite/Brine Interface: An Atomistic View on Low Salinity Effect. Koleini MM; Badizad MH; Hartkamp R; Ayatollahi S; Ghazanfari MH J Phys Chem B; 2020 Jan; 124(1):224-233. PubMed ID: 31815468 [TBL] [Abstract][Full Text] [Related]
6. Electrokinetic behavior of artificial and natural calcites: A review of experimental measurements and surface complexation models. Bonto M; Eftekhari AA; Nick HM Adv Colloid Interface Sci; 2022 Mar; 301():102600. PubMed ID: 35065336 [TBL] [Abstract][Full Text] [Related]
7. Structure and Surface Complexation at the Calcite(104)-Water Interface. Heberling F; Klačić T; Raiteri P; Gale JD; Eng PJ; Stubbs JE; Gil-Díaz T; Begović T; Lützenkirchen J Environ Sci Technol; 2021 Sep; 55(18):12403-12413. PubMed ID: 34478280 [TBL] [Abstract][Full Text] [Related]
8. Structure and reactivity of the calcite-water interface. Heberling F; Trainor TP; Lützenkirchen J; Eng P; Denecke MA; Bosbach D J Colloid Interface Sci; 2011 Feb; 354(2):843-57. PubMed ID: 21087772 [TBL] [Abstract][Full Text] [Related]
9. Predicting the electrokinetic properties on an outcrop and reservoir composite carbonate surfaces in modified salinity brines using extended surface complexation models. Tetteh JT; Pham A; Peltier E; Hutchison JM; Ghahfarokhi RB Fuel (Lond); 2022 Feb; 309():. PubMed ID: 35722593 [TBL] [Abstract][Full Text] [Related]
10. Structure of the electrical double layer at the ice-water interface. Daigle H J Chem Phys; 2021 Jun; 154(21):214703. PubMed ID: 34240978 [TBL] [Abstract][Full Text] [Related]
11. Ion-specific interactions at calcite-brine interfaces: a nano-scale study of the surface charge development and preferential binding of polar hydrocarbons. Badizad MH; Koleini MM; Greenwell HC; Ayatollahi S; Ghazanfari MH; Mohammadi M Phys Chem Chem Phys; 2020 Dec; 22(48):27999-28011. PubMed ID: 33300538 [TBL] [Abstract][Full Text] [Related]
12. Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and Pressure Conditions. Xie Y; Khishvand M; Piri M Langmuir; 2020 Jun; 36(22):6079-6088. PubMed ID: 32388994 [TBL] [Abstract][Full Text] [Related]
13. Zeta potential of CO Hidayat M; Sarmadivaleh M; Derksen J; Vega-Maza D; Iglauer S; Vinogradov J J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1226-1238. PubMed ID: 34571309 [TBL] [Abstract][Full Text] [Related]
14. Molecular insight into the nanoconfined calcite-solution interface. Diao Y; Espinosa-Marzal RM Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12047-12052. PubMed ID: 27790988 [TBL] [Abstract][Full Text] [Related]
15. An overview of the oil-brine interfacial behavior and a new surface complexation model. Bonto M; Eftekhari AA; Nick HM Sci Rep; 2019 Apr; 9(1):6072. PubMed ID: 30988368 [TBL] [Abstract][Full Text] [Related]
16. Direct visualization of single ions in the Stern layer of calcite. Ricci M; Spijker P; Stellacci F; Molinari JF; Voïtchovsky K Langmuir; 2013 Feb; 29(7):2207-16. PubMed ID: 23339738 [TBL] [Abstract][Full Text] [Related]
17. Ionic Interactions at the Crude Oil-Brine-Rock Interfaces Using Different Surface Complexation Models and DLVO Theory: Application to Carbonate Wettability. Tetteh JT; Barimah R; Korsah PK ACS Omega; 2022 Mar; 7(8):7199-7212. PubMed ID: 35252710 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the effects of ions on short-range non-DLVO forces at the calcite/brine interface and implications for low salinity oil-recovery processes. Guo H; Kovscek AR J Colloid Interface Sci; 2019 Sep; 552():295-311. PubMed ID: 31132632 [TBL] [Abstract][Full Text] [Related]
19. Molecular-scale origins of wettability at petroleum-brine-carbonate interfaces. Fenter P; Qin T; Lee SS; AlOtaibi MB; Ayirala S; Yousef AA Sci Rep; 2020 Nov; 10(1):20507. PubMed ID: 33239747 [TBL] [Abstract][Full Text] [Related]
20. Disjoining pressures, zeta potentials and surface tensions of aqueous non-ionic surfactant/electrolyte solutions: theory and comparison to experiment. Karraker KA; Radke CJ Adv Colloid Interface Sci; 2002 Feb; 96(1-3):231-64. PubMed ID: 11908789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]