These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34840442)

  • 1. Filter made of cuprammonium regenerated cellulose for virus removal: a mini-review.
    Ide S
    Cellulose (Lond); 2022; 29(5):2779-2793. PubMed ID: 34840442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of Planova filters in manufacturing processes of biologicals improve the virus safety effectively: A review of publicly available data.
    Gröner A
    Biotechnol Prog; 2024; 40(1):e3398. PubMed ID: 37985214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct visualization of virus removal process in hollow fiber membrane using an optical microscope.
    Ayano M; Sawamura Y; Hongo-Hirasaki T; Nishizaka T
    Sci Rep; 2021 Jan; 11(1):1095. PubMed ID: 33441582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH, NaCl concentration, and mAb concentration of feed solution on the filterability of Planova™ 20N and Planova™ BioEX.
    Hashikawa-Muto C; Yokoyama Y; Hamamoto R; Kobayashi K; Masuda Y; Nonaka K
    Biotechnol Prog; 2024; 40(2):e3420. PubMed ID: 38146091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virus filtration using small pore virus filter in downstream processing of biotherapeutic products: The effect of operating pressure.
    Liu N; Xu T
    Biologicals; 2023 Nov; 84():101718. PubMed ID: 37837714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of virus through novel membrane filtration method.
    Manabe S
    Dev Biol Stand; 1996; 88():81-90. PubMed ID: 9119166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic visualization of virus removal by dedicated filters used in biopharmaceutical processing: Impact of membrane structure and localization of captured virus particles.
    Adan-Kubo J; Tsujikawa M; Takahashi K; Hongo-Hirasaki T; Sakai K
    Biotechnol Prog; 2019 Nov; 35(6):e2875. PubMed ID: 31228338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose-based virus-retentive filters: a review.
    Junter GA; Lebrun L
    Rev Environ Sci Biotechnol; 2017; 16(3):455-489. PubMed ID: 32214924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrity testing of Planova™ BioEX virus removal filters used in the manufacture of biological products.
    Sekine S; Komuro M; Sohka T; Sato T
    Biologicals; 2015 May; 43(3):186-94. PubMed ID: 25753822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus.
    Roush DJ; Myrold A; Burnham MS; And JV; Hughes JV
    Biotechnol Prog; 2015; 31(1):135-44. PubMed ID: 25395156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed.
    Rayfield WJ; Roush DJ; Chmielowski RA; Tugcu N; Barakat S; Cheung JK
    Biotechnol Prog; 2015; 31(3):765-74. PubMed ID: 25919945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of viruses from human intravenous immune globulin by 35 nm nanofiltration.
    Troccoli NM; McIver J; Losikoff A; Poiley J
    Biologicals; 1998 Dec; 26(4):321-9. PubMed ID: 10403036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scrapie removal using Planova virus removal filters.
    Tateishi J; Kitamoto T; Mohri S; Satoh S; Sato T; Shepherd A; Macnaughton MR
    Biologicals; 2001 Mar; 29(1):17-25. PubMed ID: 11482889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of antibody solution conditions on filter performance for virus removal filter Planova 20N.
    Hongo-Hirasaki T; Komuro M; Ide S
    Biotechnol Prog; 2010; 26(4):1080-7. PubMed ID: 20730765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adapting virus filtration to continuous processing: Effects of product and process variability on filtration performance.
    Kozaili J; Rayfield W; Gospodarek A; Brower M; Strauss D
    Biotechnol Prog; 2024; 40(2):e3407. PubMed ID: 38146086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the performance characteristics of the Planova-series hollow-fiber parvovirus filters using confocal and electron microscopy.
    Nazem-Bokaee H; Chen D; O'Donnell SM; Zydney AL
    Biotechnol Bioeng; 2019 Aug; 116(8):2010-2017. PubMed ID: 30982955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofiltration, a new specific virus elimination method applied to high-purity factor IX and factor XI concentrates.
    Burnouf-Radosevich M; Appourchaux P; Huart JJ; Burnouf T
    Vox Sang; 1994; 67(2):132-8. PubMed ID: 7801601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virus filtration of high-concentration monoclonal antibody solutions.
    Marques BF; Roush DJ; Göklen KE
    Biotechnol Prog; 2009; 25(2):483-91. PubMed ID: 19353736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to achieving modular retrovirus clearance for a parvovirus filter.
    Stuckey J; Strauss D; Venkiteshwaran A; Gao J; Luo W; Quertinmont M; O'Donnell S; Chen D
    Biotechnol Prog; 2014; 30(1):79-85. PubMed ID: 24123923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus removal from factor IX by filtration: validation of the integrity test and effect of manufacturing process conditions.
    Roberts PL; Feldman P; Crombie D; Walker C; Lowery K
    Biologicals; 2010 Mar; 38(2):303-10. PubMed ID: 20089418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.