These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34841204)

  • 1. A Quinone-Based Cathode Material for High-Performance Organic Lithium and Sodium Batteries.
    Wilkinson D; Bhosale M; Amores M; Naresh G; Cussen SA; Cooke G
    ACS Appl Energy Mater; 2021 Nov; 4(11):12084-12090. PubMed ID: 34841204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzo-Dipteridine Derivatives as Organic Cathodes for Li- and Na-ion Batteries.
    Cariello M; Johnston B; Bhosale M; Amores M; Wilson E; McCarron LJ; Wilson C; Corr SA; Cooke G
    ACS Appl Energy Mater; 2020 Sep; 3(9):8302-8308. PubMed ID: 33015587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries.
    Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A low-cost naphthaldiimide based organic cathode for rechargeable lithium-ion batteries.
    Wang Z; Zhang P; Li J; Zhang C; Jiang JX; Lv M; Ding Z; Zhang B
    Front Chem; 2022; 10():1056244. PubMed ID: 36465871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binder-free Lithium-Ion Battery.
    Yao CJ; Wu Z; Xie J; Yu F; Guo W; Xu ZJ; Li DS; Zhang S; Zhang Q
    ChemSusChem; 2020 May; 13(9):2457-2463. PubMed ID: 31782976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries.
    Luo C; Xu GL; Ji X; Hou S; Chen L; Wang F; Jiang J; Chen Z; Ren Y; Amine K; Wang C
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2879-2883. PubMed ID: 29378088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.
    Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the Structure and Electrochemical Properties of Benzoquinone-Embedded COF via Heat Treatment for a High-Energy Organic Cathode.
    Amin K; Mehmood W; Zhang J; Ahmed S; Mao L; Li CF; Zhang BB; Wei Z
    ACS Appl Mater Interfaces; 2024 Sep; 16(37):48771-48781. PubMed ID: 37968096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing Extended π-Conjugated Molecules with
    Chen Z; Wang J; Cai T; Hu Z; Chu J; Wang F; Gan X; Song Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27994-28003. PubMed ID: 35695375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonyl-rich Poly(pyrene-4,5,9,10-tetraone Sulfide) as Anode Materials for High-Performance Li and Na-Ion Batteries.
    Li K; Xu S; Han D; Si Z; Wang HG
    Chem Asian J; 2021 Jul; 16(14):1973-1978. PubMed ID: 34057815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrocene Appended Porphyrin-Based Bipolar Electrode Material for High-Performance Energy Storage.
    Chowdhury S; Jana S; Panguluri SPK; Wenzel W; Klayatskaya S; Ruben M
    ChemSusChem; 2024 May; 17(10):e202301903. PubMed ID: 38266158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Stable and High Rate-Performance Na-Ion Batteries Using Polyanionic Anthraquinone as the Organic Cathode.
    Tang W; Liang R; Li D; Yu Q; Hu J; Cao B; Fan C
    ChemSusChem; 2019 May; 12(10):2181-2185. PubMed ID: 30896083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porphyrin-Thiophene Based Conjugated Polymer Cathode with High Capacity for Lithium-Organic Batteries.
    Wu X; Zhou W; Ye C; Zhang J; Liu Z; Yang C; Peng J; Liu J; Gao P
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202317135. PubMed ID: 38332748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable li-ion batteries.
    Zhang L; Li N; Wu B; Xu H; Wang L; Yang XQ; Wu F
    Nano Lett; 2015 Jan; 15(1):656-61. PubMed ID: 25513887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Layered Organic Cathode for High-Energy, Fast-Charging, and Long-Lasting Li-Ion Batteries.
    Chen T; Banda H; Wang J; Oppenheim JJ; Franceschi A; Dincǎ M
    ACS Cent Sci; 2024 Mar; 10(3):569-578. PubMed ID: 38559291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P2-Type Layered Na
    Wang Q; Jiang K; Feng Y; Chu S; Zhang X; Wang P; Guo S; Zhou H
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39056-39062. PubMed ID: 32805868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Cationic (Na
    Wang H; Hashem AM; Abdel-Ghany AE; Abbas SM; El-Tawil RS; Li T; Li X; El-Mounayri H; Tovar A; Zhu L; Mauger A; Julien CM
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.