These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34841279)

  • 1. Fast-dissociating but highly specific antibodies are novel tools in biology, especially useful for multiplex super-resolution microscopy.
    Miyoshi T; Friedman TB; Watanabe N
    STAR Protoc; 2021 Dec; 2(4):100967. PubMed ID: 34841279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-automated single-molecule microscopy screening of fast-dissociating specific antibodies directly from hybridoma cultures.
    Miyoshi T; Zhang Q; Miyake T; Watanabe S; Ohnishi H; Chen J; Vishwasrao HD; Chakraborty O; Belyantseva IA; Perrin BJ; Shroff H; Friedman TB; Omori K; Watanabe N
    Cell Rep; 2021 Feb; 34(5):108708. PubMed ID: 33535030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered fast-dissociating antibody fragments for multiplexed super-resolution microscopy.
    Zhang Q; Miyamoto A; Watanabe S; Arimori T; Sakai M; Tomisaki M; Kiuchi T; Takagi J; Watanabe N
    Cell Rep Methods; 2022 Oct; 2(10):100301. PubMed ID: 36313806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol to generate fast-dissociating recombinant antibody fragments for multiplexed super-resolution microscopy.
    Zhang Q; Miyamoto A; Watanabe N
    STAR Protoc; 2023 Sep; 4(3):102523. PubMed ID: 37610875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screening of hybridoma supernatants using multiplexed fluorescent cell barcoding on live cells.
    Lu M; Chan BM; Schow PW; Chang WS; King CT
    J Immunol Methods; 2017 Dec; 451():20-27. PubMed ID: 28803843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conventional BODIPY Conjugates for Live-Cell Super-Resolution Microscopy and Single-Molecule Tracking.
    Adhikari S; Banerjee C; Moscatelli J; Puchner EM
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32568221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy.
    Jradi FM; Lavis LD
    ACS Chem Biol; 2019 Jun; 14(6):1077-1090. PubMed ID: 30997987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy.
    Kikuchi K; Adair LD; Lin J; New EJ; Kaur A
    Angew Chem Int Ed Engl; 2023 Jan; 62(1):e202204745. PubMed ID: 36177530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switchable Fluorophores for Single-Molecule Localization Microscopy.
    Li H; Vaughan JC
    Chem Rev; 2018 Sep; 118(18):9412-9454. PubMed ID: 30221931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods - Progress in super-resolution fluorescence microscopy.
    Methods; 2020 Mar; 174():1-2. PubMed ID: 31790731
    [No Abstract]   [Full Text] [Related]  

  • 11. Allosteric binding properties of a monoclonal antibody and its Fab fragment.
    Blake RC; Delehanty JB; Khosraviani M; Yu H; Jones RM; Blake DA
    Biochemistry; 2003 Jan; 42(2):497-508. PubMed ID: 12525177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Molecule Localization Microscopy with the Fluorescence-Activating and Absorption-Shifting Tag (FAST) System.
    Smith EM; Gautier A; Puchner EM
    ACS Chem Biol; 2019 Jun; 14(6):1115-1120. PubMed ID: 31083964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol for single-molecule fluorescence recovery after photobleaching microscopy to analyze the dynamics and spatial locations of nuclear transmembrane proteins in live cells.
    Tingey M; Li Y; Yang W
    STAR Protoc; 2021 Jun; 2(2):100490. PubMed ID: 34007970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysing errors in single-molecule localisation microscopy.
    Costello I; Cox S
    Int J Biochem Cell Biol; 2021 May; 134():105931. PubMed ID: 33609748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Multiplexed, Super-resolution Imaging of T Cells Using madSTORM.
    Yi J; Manna A; Barr VA; Hong J; Neuman KC; Samelson LE
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28671659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding DNA organization, damage, and repair with super-resolution fluorescence microscopy.
    Miriklis EL; Rozario AM; Rothenberg E; Bell TDM; Whelan DR
    Methods Appl Fluoresc; 2021 May; 9(3):. PubMed ID: 33765677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D positioning of tagged DNA loci by widefield and super-resolution fluorescence imaging of fixed yeast nuclei.
    Da Mota M; Cau J; Mateos-Langerak J; Lengronne A; Pasero P; Poli J
    STAR Protoc; 2021 Jun; 2(2):100525. PubMed ID: 34027483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Term, Single-Molecule Imaging of Proteins in Live Cells with Photoregulated Fluxional Fluorophores.
    Eördögh Á; Martin A; Rivera-Fuentes P
    Chemistry; 2022 Dec; 28(71):e202202832. PubMed ID: 36125781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Single-Molecule Localization Microscopy (qSMLM) of Membrane Proteins Based on Kinetic Analysis of Fluorophore Blinking Cycles.
    Fricke F; Beaudouin J; Malkusch S; Eils R; Heilemann M
    Methods Mol Biol; 2017; 1663():115-126. PubMed ID: 28924663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic analysis beyond the diffraction limit.
    Dong B; Davis JL; Sun C; Zhang HF
    Int J Biochem Cell Biol; 2018 Aug; 101():113-117. PubMed ID: 29874548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.