BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34841616)

  • 21. The Use of qPCR to Detect Cryphonectria parasitica in Plants.
    Chandelier A
    Methods Mol Biol; 2022; 2536():167-177. PubMed ID: 35819605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between ectomycorrhizal fungi and chestnut blight (
    Bauman JM; Francino S; Santas A
    AIMS Microbiol; 2018; 4(1):104-122. PubMed ID: 31294206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First Report of Chestnut Blight Caused by Cryphonectria parasitica in a Chestnut Orchard in Andalusia (Southern Spain).
    Bascón J; Castillo S; Borrero C; Orta S; Gata A; Avilés M
    Plant Dis; 2014 Feb; 98(2):283. PubMed ID: 30708770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative efficacy of gypsy moth (Lepidoptera: Erebidae) entomopathogens on transgenic blight-tolerant and wild-type American, Chinese, and hybrid chestnuts (Fagales: Fagaceae).
    Brown AJ; Newhouse AE; Powell WA; Parry D
    Insect Sci; 2020 Oct; 27(5):1067-1078. PubMed ID: 31339228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Fresh Dead Wood in the Epidemiology and the Biological Control of the Chestnut Blight Fungus.
    Meyer JB; Chalmandrier L; Fässler F; Schefer C; Rigling D; Prospero S
    Plant Dis; 2019 Mar; 103(3):430-438. PubMed ID: 30632896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature-dependent genotype-by-genotype interaction between a pathogenic fungus and its hyperparasitic virus.
    Bryner SF; Rigling D
    Am Nat; 2011 Jan; 177(1):65-74. PubMed ID: 21117965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Two Decades of Cryphonectria parasitica Hypovirus Introduction in an American Chestnut Stand in Wisconsin.
    Double ML; Jarosz AM; Fulbright DW; Davelos Baines A; MacDonald WL
    Phytopathology; 2018 Jun; 108(6):702-710. PubMed ID: 29318913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Fungal Pathogen
    Dobry EP; Rutter MA; Campbell M
    Phytopathology; 2023 Oct; 113(10):1817-1821. PubMed ID: 37227197
    [No Abstract]   [Full Text] [Related]  

  • 29. Soluble material secreted from
    Florjanczyk A; Barnes R; Kenney A; Horzempa J
    J Plant Pathol Microbiol; 2016 Apr; 7(4):. PubMed ID: 27274909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping QTLs for blight resistance and morpho-phenological traits in inter-species hybrid families of chestnut (
    Fan S; Georgi LL; Hebard FV; Zhebentyayeva T; Yu J; Sisco PH; Fitzsimmons SF; Staton ME; Abbott AG; Nelson CD
    Front Plant Sci; 2024; 15():1365951. PubMed ID: 38650705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in Cryphonectria parasitica Populations Affect Natural Biological Control of Chestnut Blight.
    Ježić M; Mlinarec J; Vuković R; Katanić Z; Krstin L; Nuskern L; Poljak I; Idžojtić M; Tkalec M; Ćurković-Perica M
    Phytopathology; 2018 Jul; 108(7):870-877. PubMed ID: 29442579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hail-Induced Infections of the Chestnut Blight Pathogen
    Lione G; Giordano L; Turina M; Gonthier P
    Phytopathology; 2020 Jul; 110(7):1280-1293. PubMed ID: 32212893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bumble bee (Bombus impatiens) survival, pollen usage, and reproduction are not affected by oxalate oxidase at realistic concentrations in American chestnut (Castanea dentata) pollen.
    Newhouse AE; Allwine AE; Oakes AD; Matthews DF; McArt SH; Powell WA
    Transgenic Res; 2021 Dec; 30(6):751-764. PubMed ID: 34110572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome Sequence of the Chestnut Blight Fungus
    Crouch JA; Dawe A; Aerts A; Barry K; Churchill ACL; Grimwood J; Hillman BI; Milgroom MG; Pangilinan J; Smith M; Salamov A; Schmutz J; Yadav JS; Grigoriev IV; Nuss DL
    Phytopathology; 2020 Jun; 110(6):1180-1188. PubMed ID: 32207662
    [No Abstract]   [Full Text] [Related]  

  • 35. Evaluation of an Alternative Small Stem Assay for Blight Resistance in American, Chinese, and Hybrid Chestnuts (
    Cipollini ML; Moss JP; Walker W; Bailey N; Foster C; Reece H; Jennings C
    Plant Dis; 2021 Mar; 105(3):576-584. PubMed ID: 32865481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing genomic selection for blight resistance in American chestnut backcross populations: A trade-off with American chestnut ancestry implies resistance is polygenic.
    Westbrook JW; Zhang Q; Mandal MK; Jenkins EV; Barth LE; Jenkins JW; Grimwood J; Schmutz J; Holliday JA
    Evol Appl; 2020 Jan; 13(1):31-47. PubMed ID: 31892942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chestnuts bred for blight resistance depart nursery with distinct fungal rhizobiomes.
    Reazin C; Baird R; Clark S; Jumpponen A
    Mycorrhiza; 2019 Jul; 29(4):313-324. PubMed ID: 31129728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New formulation and delivery method of Cryphonectria parasitica for biological control of chestnut blight.
    Kunova A; Pizzatti C; Cerea M; Gazzaniga A; Cortesi P
    J Appl Microbiol; 2017 Jan; 122(1):180-187. PubMed ID: 27748552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bark-inhabiting fungal communities of European chestnut undergo substantial alteration by canker formation following chestnut blight infection.
    Douanla-Meli C; Moll J
    Front Microbiol; 2023; 14():1052031. PubMed ID: 36778875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced hypovirus transmission by engineered super donor strains of the chestnut blight fungus, Cryphonectria parasitica, into a natural population of strains exhibiting diverse vegetative compatibility genotypes.
    Stauder CM; Nuss DL; Zhang DX; Double ML; MacDonald WL; Metheny AM; Kasson MT
    Virology; 2019 Feb; 528():1-6. PubMed ID: 30550975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.