These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34841673)

  • 1. High methanol-to-formate ratios induce butanol production in Eubacterium limosum.
    Wood JC; Marcellin E; Plan MR; Virdis B
    Microb Biotechnol; 2022 May; 15(5):1542-1549. PubMed ID: 34841673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source.
    Litty D; Müller V
    Microb Biotechnol; 2021 Nov; 14(6):2686-2692. PubMed ID: 33629808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of acetogen formatotrophic potential using Eubacterium limosum.
    Wood JC; Gonzalez-Garcia RA; Daygon D; Talbo G; Plan MR; Marcellin E; Virdis B
    Appl Microbiol Biotechnol; 2023 Jul; 107(14):4507-4518. PubMed ID: 37272938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing
    Humphreys JR; Hebdon SD; Rohrer H; Magnusson L; Urban C; Chen YP; Lo J
    Appl Environ Microbiol; 2022 Mar; 88(6):e0239321. PubMed ID: 35138930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii.
    Sharak Genthner BR; Bryant MP
    Appl Environ Microbiol; 1987 Mar; 53(3):471-6. PubMed ID: 3579266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement.
    Kerby R; Niemczura W; Zeikus JG
    J Bacteriol; 1983 Sep; 155(3):1208-18. PubMed ID: 6411684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refining and illuminating acetogenic Eubacterium strains for reclassification and metabolic engineering.
    Flaiz M; Poehlein A; Wilhelm W; Mook A; Daniel R; Dürre P; Bengelsdorf FR
    Microb Cell Fact; 2024 Jan; 23(1):24. PubMed ID: 38233843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic potential and physiological characteristics of C1 metabolism in novel acetogenic bacteria.
    Yu J; Park MJ; Lee J; Kwon SJ; Lim JK; Lee HS; Kang SG; Lee JH; Kwon KK; Kim YJ
    Front Microbiol; 2023; 14():1279544. PubMed ID: 37933250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic biodegradation of methyl esters by Acetobacterium woodii and Eubacterium limosum.
    Liu S; Suflita JM
    J Ind Microbiol; 1994 Sep; 13(5):321-7. PubMed ID: 7765371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of the biocommodities butanol and acetone from methanol with fluorescent FAST-tagged proteins using metabolically engineered strains of Eubacterium limosum.
    Flaiz M; Ludwig G; Bengelsdorf FR; Dürre P
    Biotechnol Biofuels; 2021 May; 14(1):117. PubMed ID: 33971948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A non-passive mechanism of butyrate excretion operates during acidogenic fermentation of methanol by Eubacterium limosum.
    Loubiere P; Goma G; Lindley ND
    Antonie Van Leeuwenhoek; 1990 Feb; 57(2):83-9. PubMed ID: 2321932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of vitamin B12 in anaerobic bacteria. Experiments with Eubacterium limosum on the incorporation of D-[1-13C]erythrose and [13C]formate into the 5,6-dimethylbenzimidazole moiety.
    Munder M; Vogt JR; Vogler B; Renz P
    Eur J Biochem; 1992 Mar; 204(2):679-83. PubMed ID: 1531794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methanol supply speeds up synthesis gas fermentation by methylotrophic-acetogenic bacterium, Eubacterium limosum KIST612.
    Kim JY; Park S; Jeong J; Lee M; Kang B; Jang SH; Jeon J; Jang N; Oh S; Park ZY; Chang IS
    Bioresour Technol; 2021 Feb; 321():124521. PubMed ID: 33321298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas.
    Ramió-Pujol S; Ganigué R; Bañeras L; Colprim J
    Int Microbiol; 2014 Dec; 17(4):195-204. PubMed ID: 26421736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species.
    Genthner BR; Davis CL; Bryant MP
    Appl Environ Microbiol; 1981 Jul; 42(1):12-9. PubMed ID: 6791591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic catabolism of formate to acetate and CO2 by Butyribacterium methylotrophicum.
    Kerby R; Zeikus JG
    J Bacteriol; 1987 May; 169(5):2063-8. PubMed ID: 3106329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth kinetics of Acetobacterium sp. on methanol-formate in continuous culture.
    Bainotti AE; Nishio N
    J Appl Microbiol; 2000 Feb; 88(2):191-201. PubMed ID: 10735986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction.
    Neuendorf CS; Vignolle GA; Derntl C; Tomin T; Novak K; Mach RL; Birner-Grünberger R; Pflügl S
    Metab Eng; 2021 Nov; 68():68-85. PubMed ID: 34537366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renewable methanol and formate as microbial feedstocks.
    Cotton CA; Claassens NJ; Benito-Vaquerizo S; Bar-Even A
    Curr Opin Biotechnol; 2020 Apr; 62():168-180. PubMed ID: 31733545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach.
    Usai G; Cirrincione S; Re A; Manfredi M; Pagnani A; Pessione E; Mazzoli R
    J Proteomics; 2020 Mar; 216():103667. PubMed ID: 31982546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.