BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34842240)

  • 1. Rapid Encapsulation of Reconstituted Cytoskeleton Inside Giant Unilamellar Vesicles.
    Bashirzadeh Y; Wubshet N; Litschel T; Schwille P; Liu AP
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.
    Van de Cauter L; Fanalista F; van Buren L; De Franceschi N; Godino E; Bouw S; Danelon C; Dekker C; Koenderink GH; Ganzinger KA
    ACS Synth Biol; 2021 Jul; 10(7):1690-1702. PubMed ID: 34185516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
    Chen S; Sun ZG; Murrell MP
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36094272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of phase separated vesicles by double layer cDICE.
    Dürre K; Bausch AR
    Soft Matter; 2019 Dec; 15(47):9676-9681. PubMed ID: 31663090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Reconstitution Inside Giant Unilamellar Vesicles.
    Litschel T; Schwille P
    Annu Rev Biophys; 2021 May; 50():525-548. PubMed ID: 33667121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of the Bacterial Glutamate Receptor Channel by Encapsulation of a Cell-Free Expression System.
    Loi KJ; Moghimianavval H; Liu AP
    J Vis Exp; 2024 Mar; (205):. PubMed ID: 38526087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Septin-based readout of PI(4,5)P2 incorporation into membranes of giant unilamellar vesicles.
    Beber A; Alqabandi M; Prévost C; Viars F; Lévy D; Bassereau P; Bertin A; Mangenot S
    Cytoskeleton (Hoboken); 2019 Jan; 76(1):92-103. PubMed ID: 30070077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of Nucleic Acids into Giant Unilamellar Vesicles by Freeze-Thaw: a Way Protocells May Form.
    Qiao H; Hu N; Bai J; Ren L; Liu Q; Fang L; Wang Z
    Orig Life Evol Biosph; 2017 Dec; 47(4):499-510. PubMed ID: 27807660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How cellular membrane properties are affected by the actin cytoskeleton.
    Lemière J; Valentino F; Campillo C; Sykes C
    Biochimie; 2016 Nov; 130():33-40. PubMed ID: 27693515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of proteins on electroformed giant unilamellar vesicles.
    Schmid EM; Richmond DL; Fletcher DA
    Methods Cell Biol; 2015; 128():319-38. PubMed ID: 25997355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles.
    Merkle D; Kahya N; Schwille P
    Chembiochem; 2008 Nov; 9(16):2673-81. PubMed ID: 18830993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin protein inside DMPC GUVs and its mechanical response to AC electric fields.
    Ángeles-Robles G; Ortiz-Dosal LC; Aranda-Espinoza H; Olivares-Illana V; Arauz-Lara JL; Aranda-Espinoza S
    Biochim Biophys Acta Biomembr; 2022 May; 1864(5):183883. PubMed ID: 35181295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unilamellar vesicle formation and encapsulation by microfluidic jetting.
    Stachowiak JC; Richmond DL; Li TH; Liu AP; Parekh SH; Fletcher DA
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4697-702. PubMed ID: 18353990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins.
    Miwa A; Kamiya K
    ACS Synth Biol; 2022 Nov; 11(11):3836-3846. PubMed ID: 36197293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions.
    Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR
    Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-Triggered Assembly of Endomembrane Multicompartments in Synthetic Cells.
    Lussier F; Schröter M; Diercks NJ; Jahnke K; Weber C; Frey C; Platzman I; Spatz JP
    ACS Synth Biol; 2022 Jan; 11(1):366-382. PubMed ID: 34889607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the Inverted Emulsion Method for High-Yield Production of Biomimetic Giant Unilamellar Vesicles.
    Moga A; Yandrapalli N; Dimova R; Robinson T
    Chembiochem; 2019 Oct; 20(20):2674-2682. PubMed ID: 31529570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the Membrane Dynamics and Encapsulation Mechanism of Large DNA Molecules Under Molecular Crowding Conditions Using Giant Unilamellar Vesicles.
    Tsugane M; Suzuki H
    ACS Synth Biol; 2020 Oct; 9(10):2819-2827. PubMed ID: 32938177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.