These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 34842675)
1. 3D Printing of Alginate-Natural Clay Hydrogel-Based Nanocomposites. Leu Alexa R; Ianchis R; Savu D; Temelie M; Trica B; Serafim A; Vlasceanu GM; Alexandrescu E; Preda S; Iovu H Gels; 2021 Nov; 7(4):. PubMed ID: 34842675 [TBL] [Abstract][Full Text] [Related]
2. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
3. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Naturally Sourced Mineral Clays for the 3D Printing of Biopolymer-Based Nanocomposite Inks. Alexa RL; Iovu H; Trica B; Zaharia C; Serafim A; Alexandrescu E; Radu IC; Vlasceanu G; Preda S; Ninciuleanu CM; Ianchis R Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799601 [TBL] [Abstract][Full Text] [Related]
5. Extrusion 3D (Bio)Printing of Alginate-Gelatin-Based Composite Scaffolds for Skeletal Muscle Tissue Engineering. Sonaye SY; Ertugral EG; Kothapalli CR; Sikder P Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431432 [TBL] [Abstract][Full Text] [Related]
6. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004 [TBL] [Abstract][Full Text] [Related]
7. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
9. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related]
10. Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing. Marin MM; Gifu IC; Pircalabioru GG; Albu Kaya M; Constantinescu RR; Alexa RL; Trica B; Alexandrescu E; Nistor CL; Petcu C; Ianchis R Gels; 2023 May; 9(5):. PubMed ID: 37233016 [TBL] [Abstract][Full Text] [Related]
11. Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions. Shahbazi M; Jäger H; Ahmadi SJ; Lacroix M Carbohydr Polym; 2020 Jul; 240():116211. PubMed ID: 32475544 [TBL] [Abstract][Full Text] [Related]
12. 3D Printed Composite Scaffolds of GelMA and Hydroxyapatite Nanopowders Doped with Mg/Zn Ions to Evaluate the Expression of Genes and Proteins of Osteogenic Markers. Leu Alexa R; Cucuruz A; Ghițulică CD; Voicu G; Stamat Balahura LR; Dinescu S; Vlasceanu GM; Iovu H; Serafim A; Ianchis R; Ciocan LT; Costache M Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234548 [TBL] [Abstract][Full Text] [Related]
13. 3D Freeform Printing of Nanocomposite Hydrogels through Chen S; Jang TS; Pan HM; Jung HD; Sia MW; Xie S; Hang Y; Chong SKM; Wang D; Song J Int J Bioprint; 2020; 6(2):258. PubMed ID: 32782988 [TBL] [Abstract][Full Text] [Related]
14. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581 [TBL] [Abstract][Full Text] [Related]
15. Development of Biocomposite Alginate-Cuttlebone-Gelatin 3D Printing Inks Designed for Scaffolds with Bone Regeneration Potential. Curti F; Serafim A; Olaret E; Dinescu S; Samoila I; Vasile BS; Iovu H; Lungu A; Stancu IC; Marinescu R Mar Drugs; 2022 Oct; 20(11):. PubMed ID: 36354993 [TBL] [Abstract][Full Text] [Related]
16. Development of thick paste-like inks based on superconcentrated gelatin/alginate for 3D printing of scaffolds with shape fidelity and stability. Curti F; Drăgușin DM; Serafim A; Iovu H; Stancu IC Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111866. PubMed ID: 33641888 [TBL] [Abstract][Full Text] [Related]
17. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
18. Green nanocomposite gels based on binary network of sodium alginate and percolating halloysite clay nanotubes for 3D printing. Glukhova SA; Molchanov VS; Chesnokov YM; Lokshin BV; Kharitonova EP; Philippova OE Carbohydr Polym; 2022 Apr; 282():119106. PubMed ID: 35123742 [TBL] [Abstract][Full Text] [Related]
19. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration. Beheshtizadeh N; Farzin A; Rezvantalab S; Pazhouhnia Z; Lotfibakhshaiesh N; Ai J; Noori A; Azami M Int J Biol Macromol; 2023 Feb; 229():636-653. PubMed ID: 36586652 [TBL] [Abstract][Full Text] [Related]
20. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Zhang X; Morits M; Jonkergouw C; Ora A; Valle-Delgado JJ; Farooq M; Ajdary R; Huan S; Linder M; Rojas O; Sipponen MH; Österberg M Biomacromolecules; 2020 May; 21(5):1875-1885. PubMed ID: 31992046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]