These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34842691)

  • 1. Synthesis of Oxidant Functionalised Cationic Polymer Hydrogel for Enhanced Removal of Arsenic (III).
    Song Y; Gotoh T; Nakai S
    Gels; 2021 Nov; 7(4):. PubMed ID: 34842691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels.
    Ateia M; Arifuzzaman M; Pellizzeri S; Attia MF; Tharayil N; Anker JN; Karanfil T
    Water Res; 2019 Oct; 163():114874. PubMed ID: 31336210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and regeneration of composite of cationic gel and iron hydroxide for adsorbing arsenic from ground water.
    Safi SR; Gotoh T; Iizawa T; Nakai S
    Chemosphere; 2019 Feb; 217():808-815. PubMed ID: 30458416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Arsenic Using a Cationic Polymer Gel Impregnated with Iron Hydroxide.
    Safi SR; Gotoh T; Iizawa T; Nakai S
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31305523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel.
    Biswas BK; Inoue J; Inoue K; Ghimire KN; Harada H; Ohto K; Kawakita H
    J Hazard Mater; 2008 Jun; 154(1-3):1066-74. PubMed ID: 18093733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of adsorption-influencing parameters for designing the batch adsorber and neural network-based prediction modelling for the aqueous arsenate removal using combustion synthesised nano-alumina.
    Prabhakar R; Samadder SR
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26367-26384. PubMed ID: 32363464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste.
    Ghimire KN; Inoue K; Yamaguchi H; Makino K; Miyajima T
    Water Res; 2003 Dec; 37(20):4945-53. PubMed ID: 14604641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater.
    Guo X; Chen F
    Environ Sci Technol; 2005 Sep; 39(17):6808-18. PubMed ID: 16190243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous removal and oxidation of arsenic from water by δ-MnO
    Wang Y; Liu H; Wang S; Li X; Wang X; Jia Y
    J Environ Sci (China); 2020 Aug; 94():147-160. PubMed ID: 32563479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar.
    Navarathna CM; Karunanayake AG; Gunatilake SR; Pittman CU; Perez F; Mohan D; Mlsna T
    J Environ Manage; 2019 Nov; 250():109429. PubMed ID: 31491719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Removal of Arsenic and Manganese from Synthetic Aqueous Solutions Using Polymer Gel Composites.
    Safi SR; Gotoh T
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33919575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly(acrylonitril-co-acrylamidopropyl-trimethyl ammonium chloride)-based hydrogels.
    Dudu TE; Sahiner M; Alpaslan D; Demirci S; Aktas N
    J Environ Manage; 2015 Sep; 161():243-251. PubMed ID: 26188989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous zirconia nanostructures (MZN) for adsorption of As(III) and As(V) from aqueous solutions.
    Shehzad K; Ahmad M; Xie C; Zhan D; Wang W; Li Z; Xu W; Liu J
    J Hazard Mater; 2019 Jul; 373():75-84. PubMed ID: 30903959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of hybrid anion exchanger containing cupric oxide for As(III) removal from water.
    Jacukowicz-Sobala I; Ociński D; Mazur P; Stanisławska E; Kociołek-Balawejder E
    J Hazard Mater; 2019 May; 370():117-125. PubMed ID: 30100103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Arsenic(V) Removal on an Iron-Based Sorbent Modified by Lanthanum(III).
    Dudek S; Kołodyńska D
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32503358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions.
    Sahiner N; Demirci S; Sahiner M; Yilmaz S; Al-Lohedan H
    J Environ Manage; 2015 Apr; 152():66-74. PubMed ID: 25617870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior removal of As(III) and As(V) from water with Mn-doped β-FeOOH nanospindles on carbon foam.
    Yan B; Liang T; Yang X; Gadgil AJ
    J Hazard Mater; 2021 Sep; 418():126347. PubMed ID: 34126383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.
    Shan C; Tong M
    Water Res; 2013 Jun; 47(10):3411-21. PubMed ID: 23587265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic and kinetic studies of As(V) removal from water by zirconium oxide-coated marine sand.
    Khan TA; Chaudhry SA; Ali I
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5425-40. PubMed ID: 23423866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.