BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34842720)

  • 1. Constructing Cellulose Diacetate Aerogels with Pearl-Necklace-like Skeleton Networking Structure.
    Xiong S; Hu Y; Zhang S; Xiao Y; Li Z
    Gels; 2021 Nov; 7(4):. PubMed ID: 34842720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose Diacetate Aerogels with Low Drying Shrinkage, High-Efficient Thermal Insulation, and Superior Mechanical Strength.
    Zhang S; Lu K; Hu Y; Xu G; Wang J; Liao Y; Yu S
    Gels; 2024 Mar; 10(3):. PubMed ID: 38534628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambient Pressure Drying to Construct Cellulose Acetate/Benzoxazine Hybrid Aerogels with Flame Retardancy, Excellent Thermal Stability, and Superior Mechanical Strength Resistance to Cryogenic Temperature.
    Zhang S; Wang Z; Hu Y; Ji H; Xiao Y; Wang J; Xu G; Ding F
    Biomacromolecules; 2022 Dec; 23(12):5056-5064. PubMed ID: 36331293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and Nanostructure of Chitosan/Nanocellulose Hybrid Aerogels.
    Zhang S; He J; Xiong S; Xiao Q; Xiao Y; Ding F; Ji H; Yang Z; Li Z
    Biomacromolecules; 2021 Aug; 22(8):3216-3222. PubMed ID: 34260205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan Based Aerogels with Low Shrinkage by Chemical Cross-Linking and Supramolecular Interaction.
    Zhang S; Xiao Q; Xiao Y; Li Z; Xiong S; Ding F; He J
    Gels; 2022 Feb; 8(2):. PubMed ID: 35200512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan/silica hybrid aerogels with synergistic capability for superior hydrophobicity and mechanical robustness.
    Zhang S; Liao Y; Lu K; Wang Z; Wang J; Lai L; Xin W; Xiao Y; Xiong S; Ding F
    Carbohydr Polym; 2023 Nov; 320():121245. PubMed ID: 37659825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Silica-Cellulose Composite Aerogels with a Nanoscale Interpenetrating Network Structure Prepared Using a Streamlined Process.
    Sai H; Zhang J; Jin Z; Fu R; Wang M; Wang Y; Wang Y; Ma L
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32260248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralight and robust aerogels based on nanochitin towards water-resistant thermal insulators.
    Yan Y; Ge F; Qin Y; Ruan M; Guo Z; He C; Wang Z
    Carbohydr Polym; 2020 Nov; 248():116755. PubMed ID: 32919557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment.
    Sivaraman D; Siqueira G; Maurya AK; Zhao S; Koebel MM; Nyström G; Lattuada M; Malfait WJ
    Carbohydr Polym; 2022 Sep; 292():119675. PubMed ID: 35725170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic Cellulose Acetate Aerogels for Thermal Insulation.
    Zhang S; Yang Z; Huang X; Wang J; Xiao Y; He J; Feng J; Xiong S; Li Z
    Gels; 2022 Oct; 8(10):. PubMed ID: 36286172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties.
    Jiménez-Saelices C; Seantier B; Cathala B; Grohens Y
    Carbohydr Polym; 2017 Feb; 157():105-113. PubMed ID: 27987805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Recycled Polyethylene Terephthalate Aerogels from Plastic Waste for Acoustic and Thermal Insulation Applications.
    Koh HW; Le DK; Ng GN; Zhang X; Phan-Thien N; Kureemun U; Duong HM
    Gels; 2018 May; 4(2):. PubMed ID: 30674819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Robust-Soft" Anisotropic Nanofibrillated Cellulose Aerogels with Superior Mechanical, Flame-Retardant, and Thermal Insulating Properties.
    Yan M; Pan Y; Cheng X; Zhang Z; Deng Y; Lun Z; Gong L; Gao M; Zhang H
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27458-27470. PubMed ID: 34081863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Rigid-Flexible" Anisotropic Biomass-Derived Aerogels with Superior Mechanical Properties for Oil Recovery and Thermal Insulation.
    Tan Z; Yoo CG; Yang D; Liu W; Qiu X; Zheng D
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42080-42093. PubMed ID: 37624365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.
    Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H
    Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boron nitride-nanosheet enhanced cellulose nanofiber aerogel with excellent thermal management properties.
    Liu Y; Zhang Y; Liao T; Gao L; Wang M; Xu X; Yang X; Liu H
    Carbohydr Polym; 2020 Aug; 241():116425. PubMed ID: 32507211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks.
    Wang L; Feng J; Luo Y; Zhou Z; Jiang Y; Luo X; Xu L; Li L; Feng J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40964-40975. PubMed ID: 34424660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic and Lightweight Carbon/Graphene Composite Aerogels for Efficient Thermal Insulation and Electromagnetic Interference Shielding.
    Jiang X; Zhao Z; Zhou S; Zou H; Liu P
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45844-45852. PubMed ID: 36166730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printing of Thermal Insulating Polyimide/Cellulose Nanocrystal Composite Aerogels with Low Dimensional Shrinkage.
    Feng C; Yu SS
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.