These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34842720)

  • 21. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.
    Du A; Liu M; Huang S; Li C; Zhou B
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29937521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect.
    Revin VV; Nazarova NB; Tsareva EE; Liyaskina EV; Revin VD; Pestov NA
    Front Bioeng Biotechnol; 2020; 8():603407. PubMed ID: 33344435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties.
    Jiang S; Zhang M; Jiang W; Xu Q; Yu J; Liu L; Liu L
    Carbohydr Polym; 2020 Nov; 247():116701. PubMed ID: 32829829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced Fabrication and Multi-Properties of Aluminum-Based Aerogels from Aluminum Waste for Thermal Insulation and Oil Absorption Applications.
    Goh XY; Ong RH; Nguyen PTT; Bai T; Aw D; Li T; Nguyen LT; Duong HM
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic, hierarchical-ordered cellulose nanoclaw hybrid aerogel with high strength and thermal insulation.
    Peng Q; Lu Y; Li Z; Zhang J; Zong L
    Carbohydr Polym; 2022 Dec; 297():119990. PubMed ID: 36184160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monolithic carbon aerogels within foam framework for high-temperature thermal insulation and organics absorption.
    Wu K; Cao J; Qian Z; Luo Y; Niu B; Zhang Y; Long D
    J Colloid Interface Sci; 2022 Jul; 618():259-269. PubMed ID: 35339962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellulose Aerogels: Synthesis, Applications, and Prospects.
    Long LY; Weng YX; Wang YZ
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of Biopolymer Aerogels Using Green Solvents.
    Subrahmanyam R; Gurikov P; Meissner I; Smirnova I
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27403649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust Silica-Agarose Composite Aerogels with Interpenetrating Network Structure by In Situ Sol-Gel Process.
    Yang X; Jiang P; Xiao R; Fu R; Liu Y; Ji C; Song Q; Miao C; Yu H; Gu J; Wang Y; Sai H
    Gels; 2022 May; 8(5):. PubMed ID: 35621601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermally Insulating SiO
    Zhao C; Qiao F; Ji J; Deng S; Qi H
    Langmuir; 2023 Jul; 39(27):9468-9475. PubMed ID: 37382911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polysaccharide-based aerogels for thermal insulation and superinsulation: An overview.
    Zou F; Budtova T
    Carbohydr Polym; 2021 Aug; 266():118130. PubMed ID: 34044946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Study of the Physical and Mechanical Properties of Aerogels Obtained from Bacterial Cellulose.
    Revin VV; Pestov NA; Shchankin MV; Mishkin VP; Platonov VI; Uglanov DA
    Biomacromolecules; 2019 Mar; 20(3):1401-1411. PubMed ID: 30768255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nacre-Mimetic Nanocomposite Aerogels with Exceptional Mechanical Performance for Thermal Superinsulation at Extreme Conditions.
    Zhang J; Zheng J; Gao M; Xu C; Cheng Y; Zhu M
    Adv Mater; 2023 Jul; 35(29):e2300813. PubMed ID: 37080594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of Mechanically Strong Silica Aerogels with the Thermally Induced Phase Separation (TIPS) Method of Poly(methyl methacrylate).
    Ma H; Wang B; Qi J; Pan Y; Chen C
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.
    Liebner F; Haimer E; Wendland M; Neouze MA; Schlufter K; Miethe P; Heinze T; Potthast A; Rosenau T
    Macromol Biosci; 2010 Apr; 10(4):349-52. PubMed ID: 20166232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chitin nanowhisker aerogels.
    Heath L; Zhu L; Thielemans W
    ChemSusChem; 2013 Mar; 6(3):537-44. PubMed ID: 23335426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient preparation of crack-free, low-density and transparent polymethylsilsesquioxane aerogels
    Li T; Du A; Zhang T; Ding W; Liu M; Shen J; Zhang Z; Zhou B
    RSC Adv; 2018 May; 8(32):17967-17975. PubMed ID: 35542068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cogel Strategy for the Preparation of a "Thorn"-Like Porous Halloysite/Gelatin Composite Aerogel with Excellent Mechanical Properties and Thermal Insulation.
    Zhao F; Liu H; Li H; Cao Y; Hua X; Ge S; He Y; Jiang C; He D
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17763-17773. PubMed ID: 35384643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrahigh-strength carbon aerogels for high temperature thermal insulation.
    Wu K; Zhou Q; Cao J; Qian Z; Niu B; Long D
    J Colloid Interface Sci; 2022 Mar; 609():667-675. PubMed ID: 34823850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of Aerogel-like Silica Foam with the Hollow-Sphere-Based 3D Network Skeleton by the Cast-in Situ Method and Ambient Pressure Drying.
    Huang C; Cheng X; Chen B; Wang J; Dai Y; Situ Y; Huang H
    Nano Lett; 2022 Dec; 22(23):9290-9296. PubMed ID: 36404639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.