These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34842720)

  • 61. Ultralight Multifunctional Carbon-Based Aerogels by Combining Graphene Oxide and Bacterial Cellulose.
    Li C; Wu ZY; Liang HW; Chen JF; Yu SH
    Small; 2017 Jul; 13(25):. PubMed ID: 28508512
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultralight Aerogels with Hierarchical Porous Structures Prepared from Cellulose Nanocrystal Stabilized Pickering High Internal Phase Emulsions.
    Qiao M; Yang X; Zhu Y; Guerin G; Zhang S
    Langmuir; 2020 Jun; 36(23):6421-6428. PubMed ID: 32432883
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Directional-Freezing-Assisted In Situ Sol-Gel Strategy to Synthesize High-Strength, Fire-Resistant, and Hydrophobic Wood-Based Composite Aerogels for Thermal Insulation.
    Hou Y; Chen J; Pan D; Zhao L
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826340
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Lightweight and highly hydrophobic silica aerogels dried in ambient pressure for an efficient oil/organic solvent adsorption.
    Sert Çok S; Koç F; Gi Zli N
    J Hazard Mater; 2021 Apr; 408():124858. PubMed ID: 33385720
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Study on Thermal Conductivities of Aromatic Polyimide Aerogels.
    Feng J; Wang X; Jiang Y; Du D; Feng J
    ACS Appl Mater Interfaces; 2016 May; 8(20):12992-6. PubMed ID: 27149155
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In Situ Formation of the TiCN Phase in SiBCN Ceramic Aerogels Enabling Superior Thermal and Structural Stability up to 1800 °C.
    Sun X; Zhu W; Wang H; Yan X; Su D
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12221-12231. PubMed ID: 36825905
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Versatile Thermal-Solidifying Direct-Write Assembly towards Heat-Resistant 3D-Printed Ceramic Aerogels for Thermal Insulation.
    Wang L; Feng J; Luo Y; Jiang Y; Zhang G; Feng J
    Small Methods; 2022 May; 6(5):e2200045. PubMed ID: 35344287
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Self-Assembly of Cellulose in Super-Cooled Ionic Liquid under the Impact of Decelerated Antisolvent Infusion: An Approach toward Anisotropic Gels and Aerogels.
    Plappert SF; Nedelec JM; Rennhofer H; Lichtenegger HC; Bernstorff S; Liebner FW
    Biomacromolecules; 2018 Nov; 19(11):4411-4422. PubMed ID: 30252450
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Improving Pore Characteristics, Mechanical Properties and Thermal Performances of Near-Net Shape Manufacturing Phenolic Resin Aerogels.
    Sha R; Dai J; Wang B; Sha J
    Polymers (Basel); 2024 Jun; 16(11):. PubMed ID: 38891539
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Preparation and Characterization of Polyimide Aerogels with a Uniform Nanoporous Framework.
    Zhong Y; Kong Y; Zhang J; Chen Y; Li B; Wu X; Liu S; Shen X; Cui S
    Langmuir; 2018 Sep; 34(36):10529-10536. PubMed ID: 30118236
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Facile synthesis of ternary flexible silica aerogels with coarsened skeleton for oil-water separation.
    Zhang Y; Shen Q; Li X; Xie H; Nie C
    RSC Adv; 2020 Nov; 10(69):42297-42304. PubMed ID: 35516755
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Lightweight, Anisotropic, Compressible, and Thermally-Insulating Wood Aerogels with Aligned Cellulose Fibers.
    Sun H; Bi H; Lin X; Cai L; Xu M
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936375
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Effect of Particle Necks on the Mechanical Properties of Aerogels.
    Ratke L; Rege A; Aney S
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614567
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cellulose-silica aerogels.
    Demilecamps A; Beauger C; Hildenbrand C; Rigacci A; Budtova T
    Carbohydr Polym; 2015 May; 122():293-300. PubMed ID: 25817671
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Macroscopic-Scale Preparation of Aramid Nanofiber Aerogel by Modified Freezing-Drying Method.
    Xie C; Liu S; Zhang Q; Ma H; Yang S; Guo ZX; Qiu T; Tuo X
    ACS Nano; 2021 Jun; 15(6):10000-10009. PubMed ID: 34086437
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials.
    Druel L; Bardl R; Vorwerg W; Budtova T
    Biomacromolecules; 2017 Dec; 18(12):4232-4239. PubMed ID: 29068674
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hydrophobic Modification of Pectin Aerogels via Chemical Vapor Deposition.
    Effraimopoulou E; Jaxel J; Budtova T; Rigacci A
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931978
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thermal Superinsulating Materials Made from Nanofibrillated Cellulose-Stabilized Pickering Emulsions.
    Jiménez-Saelices C; Seantier B; Grohens Y; Capron I
    ACS Appl Mater Interfaces; 2018 May; 10(18):16193-16202. PubMed ID: 29684278
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation.
    Tripathi A; Parsons GN; Rojas OJ; Khan SA
    ACS Omega; 2017 Aug; 2(8):4297-4305. PubMed ID: 31457721
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Highly absorbent cellulose nanofibrils aerogels prepared by supercritical drying.
    Darpentigny C; Nonglaton G; Bras J; Jean B
    Carbohydr Polym; 2020 Feb; 229():115560. PubMed ID: 31826439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.