BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34842879)

  • 1. Proton conductors with wide operating temperature domains achieved by applying a dual-modification strategy to MIL-101.
    Zhang W; Lu Y; Zhang S; Dang T; Tian H; Zhang Z; Liu S
    Dalton Trans; 2021 Dec; 50(48):18053-18060. PubMed ID: 34842879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOF-Based Solid-State Proton Conductors Obtained by Intertwining Protic Ionic Liquid Polymers with MIL-101.
    Zhang S; Xie Y; Somerville RJ; Tirani FF; Scopelliti R; Fei Z; Zhu D; Dyson PJ
    Small; 2023 Oct; 19(41):e2206999. PubMed ID: 37317016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-Functionalized MIL-68-type Indium(III) Metal-Organic Frameworks with Prominent Intrinsic Proton Conductivity.
    Song YJ; Sang YL; Xu KY; Hu HL; Zhu QQ; Li G
    Inorg Chem; 2024 Mar; 63(9):4233-4248. PubMed ID: 38377313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superprotonic Conductivity of a Functionalized Metal-Organic Framework at Ambient Conditions.
    Li XM; Wang Y; Mu Y; Liu J; Zeng L; Lan YQ
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9264-9271. PubMed ID: 35138786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Standing combined covalent-organic-framework membranes for subzero conductivity assisted by ionic liquids.
    Jie P; Wang X; Zhang F; Wen C; Feng L; Qu F; Liang X
    J Colloid Interface Sci; 2021 Oct; 599():595-602. PubMed ID: 33984759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guest-Assisted Proton Conduction in the Sulfonic Mesoporous MIL-101 MOF.
    Devautour-Vinot S; Sanil ES; Geneste A; Ortiz V; Yot PG; Chang JS; Maurin G
    Chem Asian J; 2019 Oct; 14(20):3561-3565. PubMed ID: 31125184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving High Proton Conductivity in MIL-91(Al) Aerogel.
    Wu H; Jia J; Li XM; Ibragimov AB; Gao H; Gao J
    Inorg Chem; 2024 Mar; 63(11):4813-4818. PubMed ID: 38450622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing UiO-66-Based Superprotonic Conductor with the Highest Metal-Organic Framework Based Proton Conductivity.
    Mukhopadhyay S; Debgupta J; Singh C; Sarkar R; Basu O; Das SK
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13423-13432. PubMed ID: 30888148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keeping Superprotonic Conductivity over a Wide Temperature Region via Sulfate Hopping Sites-Decorated Zirconium-Oxo Clusters.
    Xie WL; Li XM; Lin JM; Dong LZ; Chen Y; Li N; Shi JW; Liu JJ; Liu J; Li SL; Lan YQ
    Small; 2022 Dec; 18(48):e2205444. PubMed ID: 36284496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy.
    Zhang J; He X; Kong YR; Luo HB; Liu M; Liu Y; Ren XM
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37231-37238. PubMed ID: 34324287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidic Groups Functionalized Carbon Dots Capping Channels of a Proton Conductive Metal-Organic Framework by Coordination Bonds to Improve the Water-Retention Capacity and Boost Proton Conduction.
    Zhang J; Zhang R; Liu Y; Kong YR; Luo HB; Zou Y; Zhai L; Ren XM
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60084-60091. PubMed ID: 34889608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature.
    Ye Y; Zhang L; Peng Q; Wang GE; Shen Y; Li Z; Wang L; Ma X; Chen QH; Zhang Z; Xiang S
    J Am Chem Soc; 2015 Jan; 137(2):913-8. PubMed ID: 25551516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation.
    Ponomareva VG; Kovalenko KA; Chupakhin AP; Dybtsev DN; Shutova ES; Fedin VP
    J Am Chem Soc; 2012 Sep; 134(38):15640-3. PubMed ID: 22958118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of defects in metal organic gels to enhance anhydrous proton conduction from subzero to moderate temperature.
    Gao D; Tang J; Zhang F; Wen C; Feng L; Wan C; Qu F; Liang X
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):19-27. PubMed ID: 37392496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailored Porous Ferrocene-Based Metal-Organic Frameworks as High-Performance Proton Conductors.
    Song YJ; Ren SY; Zuo S; Shi ZQ; Li Z; Li G
    Inorg Chem; 2024 May; 63(18):8194-8205. PubMed ID: 38639416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-Organic Framework-Derived N-Doped Porous Carbon for a Superprotonic Conductor at above 100 °C.
    Ren Q; Chen Y; Kong YR; Zhang J; Luo HB; Liu Y; Zou Y; Ren XM
    Inorg Chem; 2022 Dec; 61(49):20057-20063. PubMed ID: 36455074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-Temperature Superprotonic Conductivity beyond 10
    Pal SC; Mukherjee D; Oruganti Y; Lee BG; Lim DW; Pramanik B; Manna AK; Das MC
    J Am Chem Soc; 2024 May; 146(21):14546-14557. PubMed ID: 38748181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure property relationships affecting the proton conductivity in imidazole loaded Al-MOFs.
    Homburg T; Hartwig C; Reinsch H; Wark M; Stock N
    Dalton Trans; 2016 Sep; 45(38):15041-15047. PubMed ID: 27711835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced proton conductivity of metal organic framework at low humidity by improvement in water retention.
    Du J; Yu G; Lin H; Jie P; Zhang F; Qu F; Wen C; Feng L; Liang X
    J Colloid Interface Sci; 2020 Aug; 573():360-369. PubMed ID: 32298929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton Conduction of Nafion Hybrid Membranes Promoted by NH
    Wang H; Zhao Y; Shao Z; Xu W; Wu Q; Ding X; Hou H
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7485-7497. PubMed ID: 33543925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.