These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34842888)
21. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Ding Y; Wen C; Hodgson P; Li Y J Mater Chem B; 2014 Apr; 2(14):1912-1933. PubMed ID: 32261628 [TBL] [Abstract][Full Text] [Related]
22. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents. Mao L; Shen L; Niu J; Zhang J; Ding W; Wu Y; Fan R; Yuan G Nanoscale; 2013 Oct; 5(20):9517-22. PubMed ID: 23989064 [TBL] [Abstract][Full Text] [Related]
23. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review. Kiani F; Wen C; Li Y Acta Biomater; 2020 Feb; 103():1-23. PubMed ID: 31881312 [TBL] [Abstract][Full Text] [Related]
24. In vitro corrosion and biocompatibility of binary magnesium alloys. Gu X; Zheng Y; Cheng Y; Zhong S; Xi T Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636 [TBL] [Abstract][Full Text] [Related]
25. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Willbold E; Gu X; Albert D; Kalla K; Bobe K; Brauneis M; Janning C; Nellesen J; Czayka W; Tillmann W; Zheng Y; Witte F Acta Biomater; 2015 Jan; 11():554-62. PubMed ID: 25278442 [TBL] [Abstract][Full Text] [Related]
26. A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Weng W; Biesiekierski A; Li Y; Dargusch M; Wen C Acta Biomater; 2021 Aug; 130():80-97. PubMed ID: 34118448 [TBL] [Abstract][Full Text] [Related]
27. Biocompatibility of Ti-alloys for long-term implantation. Abdel-Hady Gepreel M; Niinomi M J Mech Behav Biomed Mater; 2013 Apr; 20():407-15. PubMed ID: 23507261 [TBL] [Abstract][Full Text] [Related]
28. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Hong D; Chou DT; Velikokhatnyi OI; Roy A; Lee B; Swink I; Issaev I; Kuhn HA; Kumta PN Acta Biomater; 2016 Nov; 45():375-386. PubMed ID: 27562611 [TBL] [Abstract][Full Text] [Related]
29. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Shadanbaz S; Dias GJ Acta Biomater; 2012 Jan; 8(1):20-30. PubMed ID: 22040686 [TBL] [Abstract][Full Text] [Related]
30. Advances on biodegradable zinc-silver-based alloys for biomedical applications. Xiao X; Liu E; Shao J; Ge S J Appl Biomater Funct Mater; 2021; 19():22808000211062407. PubMed ID: 34903075 [TBL] [Abstract][Full Text] [Related]
31. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid. Bian D; Zhou W; Liu Y; Li N; Zheng Y; Sun Z Acta Biomater; 2016 Sep; 41():351-60. PubMed ID: 27221795 [TBL] [Abstract][Full Text] [Related]
32. A review on the exploitation of biodegradable magnesium-based composites for medical applications. Yang J; Koons GL; Cheng G; Zhao L; Mikos AG; Cui F Biomed Mater; 2018 Jan; 13(2):022001. PubMed ID: 28954931 [TBL] [Abstract][Full Text] [Related]
33. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements. Pogorielov M; Husak E; Solodivnik A; Zhdanov S Interv Med Appl Sci; 2017 Mar; 9(1):27-38. PubMed ID: 28932493 [TBL] [Abstract][Full Text] [Related]
34. Microstructure controls the corrosion behavior of a lean biodegradable Mg-2Zn alloy. Wang W; Wu H; Zan R; Sun Y; Blawert C; Zhang S; Ni J; Zheludkevich ML; Zhang X Acta Biomater; 2020 Apr; 107():349-361. PubMed ID: 32126309 [TBL] [Abstract][Full Text] [Related]
35. Bio-inspired biomaterial Mg-Zn-Ca: a review of the main mechanical and biological properties of Mg-based alloys. Campos Becerra LH; Hernández Rodríguez MAL; Esquivel Solís H; Lesso Arroyo R; Torres Castro A Biomed Phys Eng Express; 2020 Jun; 6(4):042001. PubMed ID: 33444260 [TBL] [Abstract][Full Text] [Related]
36. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys. Yin P; Li NF; Lei T; Liu L; Ouyang C J Mater Sci Mater Med; 2013 Jun; 24(6):1365-73. PubMed ID: 23608999 [TBL] [Abstract][Full Text] [Related]
37. Biocompatibility of beta-stabilizing elements of titanium alloys. Eisenbarth E; Velten D; Müller M; Thull R; Breme J Biomaterials; 2004 Nov; 25(26):5705-13. PubMed ID: 15147816 [TBL] [Abstract][Full Text] [Related]
38. Mg-Zn alloys, most suitable for biomedical applications. Bîrcă AC; Neacşu IA; Vasile OR; Ciucă I; Vasile IM; Fayeq MA; Vasile BŞ Rom J Morphol Embryol; 2018; 59(1):49-54. PubMed ID: 29940611 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications. Katarivas Levy G; Leon A; Kafri A; Ventura Y; Drelich JW; Goldman J; Vago R; Aghion E J Mater Sci Mater Med; 2017 Sep; 28(11):174. PubMed ID: 28956207 [TBL] [Abstract][Full Text] [Related]
40. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Shahin M; Munir K; Wen C; Li Y Acta Biomater; 2019 Sep; 96():1-19. PubMed ID: 31181263 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]