These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34842888)
41. Biodegradable ternary Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications. Lin J; Tong X; Sun Q; Luan Y; Zhang D; Shi Z; Wang K; Lin J; Li Y; Dargusch M; Wen C Acta Biomater; 2020 Oct; 115():432-446. PubMed ID: 32853807 [TBL] [Abstract][Full Text] [Related]
42. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729 [TBL] [Abstract][Full Text] [Related]
43. Security assessment of magnesium alloys used as biodegradable implant material. Sun X; Cao ZY; Liu JG; Feng C Biomed Mater Eng; 2015; 26 Suppl 1():S119-27. PubMed ID: 26405877 [TBL] [Abstract][Full Text] [Related]
44. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Xin Y; Hu T; Chu PK Acta Biomater; 2011 Apr; 7(4):1452-9. PubMed ID: 21145436 [TBL] [Abstract][Full Text] [Related]
45. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications. Sikora-Jasinska M; Mostaed E; Mostaed A; Beanland R; Mantovani D; Vedani M Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1170-1181. PubMed ID: 28531993 [TBL] [Abstract][Full Text] [Related]
46. Surface characterization and cytotoxicity response of biodegradable magnesium alloys. Pompa L; Rahman ZU; Munoz E; Haider W Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():761-768. PubMed ID: 25687006 [TBL] [Abstract][Full Text] [Related]
47. The effects of surface and biomolecules on magnesium degradation and mesenchymal stem cell adhesion. Liu H J Biomed Mater Res A; 2011 Nov; 99(2):249-60. PubMed ID: 21976450 [TBL] [Abstract][Full Text] [Related]
48. Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants. Obayi CS; Tolouei R; Paternoster C; Turgeon S; Okorie BA; Obikwelu DO; Cassar G; Buhagiar J; Mantovani D Acta Biomater; 2015 Apr; 17():68-77. PubMed ID: 25644452 [TBL] [Abstract][Full Text] [Related]
49. Biodegradable shape memory alloys: Progress and prospects. Wang Y; Venezuela J; Dargusch M Biomaterials; 2021 Dec; 279():121215. PubMed ID: 34736144 [TBL] [Abstract][Full Text] [Related]
50. Effect of Lithium and Aluminum on the Mechanical Properties, Wu J; Zhao D; Lee B; Roy A; Yao R; Chen S; Dong Z; Heineman WR; Kumta PN ACS Biomater Sci Eng; 2020 Apr; 6(4):1950-1964. PubMed ID: 33455316 [TBL] [Abstract][Full Text] [Related]
51. Advances in biodegradable materials: Degradation mechanisms, mechanical properties, and biocompatibility for orthopedic applications. Hussain M; Khan SM; Shafiq M; Abbas N; Sajjad U; Hamid K Heliyon; 2024 Jun; 10(12):e32713. PubMed ID: 39027458 [TBL] [Abstract][Full Text] [Related]
52. Influence of chemical heterogeneity and microstructure on the corrosion resistance of biodegradable WE43 magnesium alloys. Mraied H; Wang W; Cai W J Mater Chem B; 2019 Oct; 7(41):6399-6411. PubMed ID: 31642847 [TBL] [Abstract][Full Text] [Related]
53. Metallic Materials for Bone Repair. Fan L; Chen S; Yang M; Liu Y; Liu J Adv Healthc Mater; 2024 Jan; 13(3):e2302132. PubMed ID: 37883735 [TBL] [Abstract][Full Text] [Related]
54. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application. Zhang E; Yang L; Xu J; Chen H Acta Biomater; 2010 May; 6(5):1756-62. PubMed ID: 19941979 [TBL] [Abstract][Full Text] [Related]
55. Biodegradable Iron and Porous Iron: Mechanical Properties, Degradation Behaviour, Manufacturing Routes and Biomedical Applications. Salama M; Vaz MF; Colaço R; Santos C; Carmezim M J Funct Biomater; 2022 Jun; 13(2):. PubMed ID: 35735927 [TBL] [Abstract][Full Text] [Related]
56. In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells. Jiang W; Cipriano AF; Tian Q; Zhang C; Lopez M; Sallee A; Lin A; Cortez Alcaraz MC; Wu Y; Zheng Y; Liu H Acta Biomater; 2018 May; 72():407-423. PubMed ID: 29626698 [TBL] [Abstract][Full Text] [Related]
57. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials. Wang H; Zheng Y; Liu J; Jiang C; Li Y Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():60-66. PubMed ID: 27987750 [TBL] [Abstract][Full Text] [Related]
58. Biosensitive and antibacterial coatings on metallic material for medical applications. Goldmann WH Cell Biol Int; 2021 Aug; 45(8):1624-1632. PubMed ID: 33818836 [TBL] [Abstract][Full Text] [Related]
59. Effect of strain on degradation behaviors of WE43, Fe and Zn wires. Chen K; Lu Y; Tang H; Gao Y; Zhao F; Gu X; Fan Y Acta Biomater; 2020 Sep; 113():627-645. PubMed ID: 32574860 [TBL] [Abstract][Full Text] [Related]
60. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels. Yoo YR; Jang SG; Oh KT; Kim JG; Kim YS J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):310-20. PubMed ID: 18161790 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]