These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 34843066)

  • 1. Moving Towards Induced Pluripotent Stem Cell-based Therapies with Artificial Intelligence and Machine Learning.
    Coronnello C; Francipane MG
    Stem Cell Rev Rep; 2022 Feb; 18(2):559-569. PubMed ID: 34843066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognizing the Differentiation Degree of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cells Using Machine Learning and Deep Learning-Based Approaches.
    Lien CY; Chen TT; Tsai ET; Hsiao YJ; Lee N; Gao CE; Yang YP; Chen SJ; Yarmishyn AA; Hwang DK; Chou SJ; Chu WC; Chiou SH; Chien Y
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of artificial intelligence in induced pluripotent stem cell-based technology over 10-year period: A systematic scoping review.
    Vo QD; Saito Y; Ida T; Nakamura K; Yuasa S
    PLoS One; 2024; 19(5):e0302537. PubMed ID: 38771829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells.
    Tokunaga K; Saitoh N; Goldberg IG; Sakamoto C; Yasuda Y; Yoshida Y; Yamanaka S; Nakao M
    Sci Rep; 2014 Nov; 4():6996. PubMed ID: 25385348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem cell imaging through convolutional neural networks: current issues and future directions in artificial intelligence technology.
    Ramakrishna RR; Abd Hamid Z; Wan Zaki WMD; Huddin AB; Mathialagan R
    PeerJ; 2020; 8():e10346. PubMed ID: 33240655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepNEU: cellular reprogramming comes of age - a machine learning platform with application to rare diseases research.
    Danter WR
    Orphanet J Rare Dis; 2019 Jan; 14(1):13. PubMed ID: 30630505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental approaches for the generation of induced pluripotent stem cells.
    Sommer CA; Mostoslavsky G
    Stem Cell Res Ther; 2010 Aug; 1(3):26. PubMed ID: 20699015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Deep Learning-Based System to Identify Endothelial Cells Derived from Induced Pluripotent Stem Cells.
    Kusumoto D; Lachmann M; Kunihiro T; Yuasa S; Kishino Y; Kimura M; Katsuki T; Itoh S; Seki T; Fukuda K
    Stem Cell Reports; 2018 Jun; 10(6):1687-1695. PubMed ID: 29754958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autologous cell replacement: a noninvasive AI approach to clinical release testing.
    Tucker BA; Mullins RF; Stone EM
    J Clin Invest; 2020 Feb; 130(2):608-611. PubMed ID: 31961338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status.
    Awe JP; Lee PC; Ramathal C; Vega-Crespo A; Durruthy-Durruthy J; Cooper A; Karumbayaram S; Lowry WE; Clark AT; Zack JA; Sebastiano V; Kohn DB; Pyle AD; Martin MG; Lipshutz GS; Phelps PE; Pera RA; Byrne JA
    Stem Cell Res Ther; 2013 Jul; 4(4):87. PubMed ID: 23890092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable generation of induced pluripotent stem cells from human lymphoblastoid cell lines.
    Barrett R; Ornelas L; Yeager N; Mandefro B; Sahabian A; Lenaeus L; Targan SR; Svendsen CN; Sareen D
    Stem Cells Transl Med; 2014 Dec; 3(12):1429-34. PubMed ID: 25298370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming barriers to the clinical utilization of iPSCs: reprogramming efficiency, safety and quality.
    Cao S; Loh K; Pei Y; Zhang W; Han J
    Protein Cell; 2012 Nov; 3(11):834-45. PubMed ID: 23073833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming.
    Rony IK; Baten A; Bloomfield JA; Islam ME; Billah MM; Islam KD
    Cell Prolif; 2015 Apr; 48(2):140-56. PubMed ID: 25643745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
    Liu Y; Deng W
    Brain Res; 2016 May; 1638(Pt A):30-41. PubMed ID: 26423934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in the reprogramming of somatic cells.
    Ma T; Xie M; Laurent T; Ding S
    Circ Res; 2013 Feb; 112(3):562-74. PubMed ID: 23371904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons.
    Qi SD; Smith PD; Choong PF
    ANZ J Surg; 2014 Jun; 84(6):417-23. PubMed ID: 24894037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification.
    Heng BC; Fussenegger M
    Methods Mol Biol; 2014; 1151():75-94. PubMed ID: 24838880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-Induced Pluripotent Stem Cell Culture Methods Under cGMP Conditions.
    Rivera T; Zhao Y; Ni Y; Wang J
    Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e117. PubMed ID: 32649060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons.
    Qi SD; Smith PD; Choong PF
    ANZ J Surg; 2014 Jun; 84(6):E1-11. PubMed ID: 23035845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Induction: Induced Pluripotent Stem Cells (iPSCs).
    Singh VK; Kumar N; Kalsan M; Saini A; Chandra R
    J Stem Cells; 2015; 10(1):43-62. PubMed ID: 26665937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.