These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34843164)

  • 1. Metabolic engineering of Vibrio natriegens for anaerobic succinate production.
    Thoma F; Schulze C; Gutierrez-Coto C; Hädrich M; Huber J; Gunkel C; Thoma R; Blombach B
    Microb Biotechnol; 2022 Jun; 15(6):1671-1684. PubMed ID: 34843164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol.
    Zhang Y; Li Z; Liu Y; Cen X; Liu D; Chen Z
    Metab Eng; 2021 May; 65():52-65. PubMed ID: 33722653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Substrate Uptake Rates Empower Vibrio natriegens as Production Host for Industrial Biotechnology.
    Hoffart E; Grenz S; Lange J; Nitschel R; Müller F; Schwentner A; Feith A; Lenfers-Lücker M; Takors R; Blombach B
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28887417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate.
    Litsanov B; Brocker M; Bott M
    Appl Environ Microbiol; 2012 May; 78(9):3325-37. PubMed ID: 22389371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Microb Cell Fact; 2015 Jun; 14():80. PubMed ID: 26063229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions.
    Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X
    Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity.
    Sánchez AM; Bennett GN; San KY
    Metab Eng; 2005 May; 7(3):229-39. PubMed ID: 15885621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions.
    Zhu F; Wang Y; San KY; Bennett GN
    Biotechnol Bioeng; 2018 Jul; 115(7):1743-1754. PubMed ID: 29508908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield.
    Lin H; Bennett GN; San KY
    Metab Eng; 2005 Mar; 7(2):116-27. PubMed ID: 15781420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli to produce succinate from woody hydrolysate under anaerobic conditions.
    Zhu F; Wang C; San KY; Bennett GN
    J Ind Microbiol Biotechnol; 2020 Feb; 47(2):223-232. PubMed ID: 31989325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-Based Ratio Regulation of Glucose and Xylose Improved Succinate Production.
    Zhang F; Li J; Liu H; Liang Q; Qi Q
    PLoS One; 2016; 11(6):e0157775. PubMed ID: 27315279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved succinate production from galactose-rich feedstocks by engineered Escherichia coli under anaerobic conditions.
    Zhu F; San KY; Bennett GN
    Biotechnol Bioeng; 2020 Apr; 117(4):1082-1091. PubMed ID: 31868221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Vibrio natriegens.
    Thoma F; Blombach B
    Essays Biochem; 2021 Jul; 65(2):381-392. PubMed ID: 33835156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains.
    Wang J; Zhu J; Bennett GN; San KY
    Metab Eng; 2011 May; 13(3):328-35. PubMed ID: 21440082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by
    Long CP; Gonzalez JE; Cipolla RM; Antoniewicz MR
    Metab Eng; 2017 Nov; 44():191-197. PubMed ID: 29042298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.