These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34843171)
1. LCP: Simple Representation of Docking Poses for Machine Learning: A Case Study on Xanthine Oxidase Inhibitors. Kawai K; Asanuma Y; Kato T; Karuo Y; Tarui A; Sato K; Omote M Mol Inform; 2022 May; 41(5):e2100245. PubMed ID: 34843171 [TBL] [Abstract][Full Text] [Related]
2. DeepBSP-a Machine Learning Method for Accurate Prediction of Protein-Ligand Docking Structures. Bao J; He X; Zhang JZH J Chem Inf Model; 2021 May; 61(5):2231-2240. PubMed ID: 33979150 [TBL] [Abstract][Full Text] [Related]
3. Various machine learning approaches coupled with molecule simulation in the screening of natural compounds with xanthine oxidase inhibitory activity. Zhou Q; Yin JY; Liang WY; Chen DM; Yuan Q; Feng BL; Zhang YH; Wang YT Food Funct; 2021 Mar; 12(4):1580-1589. PubMed ID: 33470259 [TBL] [Abstract][Full Text] [Related]
4. A consensual machine-learning-assisted QSAR model for effective bioactivity prediction of xanthine oxidase inhibitors using molecular fingerprints. Wu Y; Li M; Shen J; Pu X; Guo Y Mol Divers; 2024 Aug; 28(4):2033-2048. PubMed ID: 37043162 [TBL] [Abstract][Full Text] [Related]
6. Beware of machine learning-based scoring functions-on the danger of developing black boxes. Gabel J; Desaphy J; Rognan D J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678 [TBL] [Abstract][Full Text] [Related]
7. RmsdXNA: RMSD prediction of nucleic acid-ligand docking poses using machine-learning method. Tan LH; Kwoh CK; Mu Y Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38695120 [TBL] [Abstract][Full Text] [Related]
8. RNAPosers: Machine Learning Classifiers for Ribonucleic Acid-Ligand Poses. Chhabra S; Xie J; Frank AT J Phys Chem B; 2020 Jun; 124(22):4436-4445. PubMed ID: 32427491 [TBL] [Abstract][Full Text] [Related]
9. Correcting the impact of docking pose generation error on binding affinity prediction. Li H; Leung KS; Wong MH; Ballester PJ BMC Bioinformatics; 2016 Sep; 17(Suppl 11):308. PubMed ID: 28185549 [TBL] [Abstract][Full Text] [Related]
10. The impact of cross-docked poses on performance of machine learning classifier for protein-ligand binding pose prediction. Shen C; Hu X; Gao J; Zhang X; Zhong H; Wang Z; Xu L; Kang Y; Cao D; Hou T J Cheminform; 2021 Oct; 13(1):81. PubMed ID: 34656169 [TBL] [Abstract][Full Text] [Related]
17. Protein-Ligand Docking in the Machine-Learning Era. Yang C; Chen EA; Zhang Y Molecules; 2022 Jul; 27(14):. PubMed ID: 35889440 [TBL] [Abstract][Full Text] [Related]
18. Augmenting bioactivity by docking-generated multiple ligand poses to enhance machine learning and pharmacophore modelling: discovery of new TTK inhibitors as case study. Al-Imam AM; Daoud S; Hatmal MM; Taha MO Mol Inform; 2023 Jun; 42(6):e2300022. PubMed ID: 37222400 [TBL] [Abstract][Full Text] [Related]
19. Boosted neural networks scoring functions for accurate ligand docking and ranking. Ashtawy HM; Mahapatra NR J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922 [TBL] [Abstract][Full Text] [Related]
20. Accelerating the Screening of Small Peptide Ligands by Combining Peptide-Protein Docking and Machine Learning. Codina JR; Mascini M; Dikici E; Deo SK; Daunert S Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]