These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34843171)

  • 1. LCP: Simple Representation of Docking Poses for Machine Learning: A Case Study on Xanthine Oxidase Inhibitors.
    Kawai K; Asanuma Y; Kato T; Karuo Y; Tarui A; Sato K; Omote M
    Mol Inform; 2022 May; 41(5):e2100245. PubMed ID: 34843171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepBSP-a Machine Learning Method for Accurate Prediction of Protein-Ligand Docking Structures.
    Bao J; He X; Zhang JZH
    J Chem Inf Model; 2021 May; 61(5):2231-2240. PubMed ID: 33979150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Various machine learning approaches coupled with molecule simulation in the screening of natural compounds with xanthine oxidase inhibitory activity.
    Zhou Q; Yin JY; Liang WY; Chen DM; Yuan Q; Feng BL; Zhang YH; Wang YT
    Food Funct; 2021 Mar; 12(4):1580-1589. PubMed ID: 33470259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A consensual machine-learning-assisted QSAR model for effective bioactivity prediction of xanthine oxidase inhibitors using molecular fingerprints.
    Wu Y; Li M; Shen J; Pu X; Guo Y
    Mol Divers; 2024 Aug; 28(4):2033-2048. PubMed ID: 37043162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RmsdXNA: RMSD prediction of nucleic acid-ligand docking poses using machine-learning method.
    Tan LH; Kwoh CK; Mu Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38695120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNAPosers: Machine Learning Classifiers for Ribonucleic Acid-Ligand Poses.
    Chhabra S; Xie J; Frank AT
    J Phys Chem B; 2020 Jun; 124(22):4436-4445. PubMed ID: 32427491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correcting the impact of docking pose generation error on binding affinity prediction.
    Li H; Leung KS; Wong MH; Ballester PJ
    BMC Bioinformatics; 2016 Sep; 17(Suppl 11):308. PubMed ID: 28185549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of cross-docked poses on performance of machine learning classifier for protein-ligand binding pose prediction.
    Shen C; Hu X; Gao J; Zhang X; Zhong H; Wang Z; Xu L; Kang Y; Cao D; Hou T
    J Cheminform; 2021 Oct; 13(1):81. PubMed ID: 34656169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning optimization of cross docking accuracy.
    Bjerrum EJ
    Comput Biol Chem; 2016 Jun; 62():133-44. PubMed ID: 27179709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning from Docked Ligands: Ligand-Based Features Rescue Structure-Based Scoring Functions When Trained on Docked Poses.
    Boyles F; Deane CM; Morris GM
    J Chem Inf Model; 2022 Nov; 62(22):5329-5341. PubMed ID: 34469150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
    Fang X; Bagui S; Bagui S
    Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docking-generated multiple ligand poses for bootstrapping bioactivity classifying Machine Learning: Repurposing covalent inhibitors for COVID-19-related TMPRSS2 as case study.
    Hatmal MM; Abuyaman O; Taha M
    Comput Struct Biotechnol J; 2021; 19():4790-4824. PubMed ID: 34426763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem.
    Mohammadi S; Narimani Z; Ashouri M; Firouzi R; Karimi-Jafari MH
    Sci Rep; 2022 Jan; 12(1):410. PubMed ID: 35013496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-Ligand Docking in the Machine-Learning Era.
    Yang C; Chen EA; Zhang Y
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmenting bioactivity by docking-generated multiple ligand poses to enhance machine learning and pharmacophore modelling: discovery of new TTK inhibitors as case study.
    Al-Imam AM; Daoud S; Hatmal MM; Taha MO
    Mol Inform; 2023 Jun; 42(6):e2300022. PubMed ID: 37222400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating the Screening of Small Peptide Ligands by Combining Peptide-Protein Docking and Machine Learning.
    Codina JR; Mascini M; Dikici E; Deo SK; Daunert S
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.