These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34843199)

  • 1. Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics.
    Shin JW; Chan Choe J; Lee JH; Han WB; Jang TM; Ko GJ; Yang SM; Kim YG; Joo J; Lim BH; Park E; Hwang SW
    ACS Nano; 2021 Dec; 15(12):19310-19320. PubMed ID: 34843199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropatterned Elastomeric Composites for Encapsulation of Transient Electronics.
    Han WB; Ko GJ; Yang SM; Kang H; Lee JH; Shin JW; Jang TM; Han S; Kim DJ; Lim JH; Rajaram K; Bandodkar AJ; Hwang SW
    ACS Nano; 2023 Aug; 17(15):14822-14830. PubMed ID: 37497757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems.
    Shin JW; Kim DJ; Jang TM; Han WB; Lee JH; Ko GJ; Yang SM; Rajaram K; Han S; Kang H; Lim JH; Eom CH; Bandodkar AJ; Min H; Hwang SW
    Nanomicro Lett; 2024 Feb; 16(1):102. PubMed ID: 38300387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copolymers of Gelatin-
    Sun X; Chan EWC; Chen Q; Kirby N; Yang J; Mata JP; Kingston RL; Barker D; Domigan L; Travas-Sejdic J
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38668737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradable π-Conjugated Polymers.
    Uva A; Michailovich S; Hsu NSY; Tran H
    J Am Chem Soc; 2024 May; 146(18):12271-12287. PubMed ID: 38656104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosafe, Eco-Friendly Levan Polysaccharide toward Transient Electronics.
    Kwon KY; Lee JS; Ko GJ; Sunwoo SH; Lee S; Jo YJ; Choi CH; Hwang SW; Kim TI
    Small; 2018 Aug; 14(32):e1801332. PubMed ID: 29974639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.
    Yu X; Shou W; Mahajan BK; Huang X; Pan H
    Adv Mater; 2018 Jul; 30(28):e1707624. PubMed ID: 29736971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone.
    Daniels AU; Chang MK; Andriano KP
    J Appl Biomater; 1990; 1(1):57-78. PubMed ID: 10148987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composites Formed from Thermoresponsive Polymers and Conductive Nanowires for Transient Electronic Systems.
    Zhang X; Bellan LM
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21991-21997. PubMed ID: 28585799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerable Self-Sintering of Solvent-Free Molybdenum/Wax Biodegradable Composites for Multimodally Transient Electronics.
    Wei Z; Ma X; Zhao H; Wu X; Guo Q
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Approach to Conjugated Polymers with Biomimetic Properties.
    Baek P; Voorhaar L; Barker D; Travas-Sejdic J
    Acc Chem Res; 2018 Jul; 51(7):1581-1589. PubMed ID: 29897228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing Temperature-Controlled Phase Transition Elastin-like Polypeptides to Transient Electronics: Realization of Proactive Biotriggered Electronics with Local Transience.
    Lin R; Yan X; Hao H; Gao W; Liu R
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46490-46496. PubMed ID: 31808331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Transiency: A Novel Approach to Expedite Degradation in Transient Electronics.
    Jamshidi R; Chen Y; Montazami R
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32224921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.
    Irimia-Vladu M
    Chem Soc Rev; 2014 Jan; 43(2):588-610. PubMed ID: 24121237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Environmentally Robust Organic Electronics: Approaches and Applications.
    Lee EK; Lee MY; Park CH; Lee HR; Oh JH
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 28960531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.
    Kang SK; Park G; Kim K; Hwang SW; Cheng H; Shin J; Chung S; Kim M; Yin L; Lee JC; Lee KM; Rogers JA
    ACS Appl Mater Interfaces; 2015 May; 7(17):9297-305. PubMed ID: 25867894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling Transient Electronics with Degradation on Demand via Light-Responsive Encapsulation of a Hydrogel-Oxide Bilayer.
    Zhong S; Ji X; Song L; Zhang Y; Zhao R
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36171-36176. PubMed ID: 30272434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.