These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34843200)

  • 41. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation.
    Yang C; Wu L; Li G
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20150-20158. PubMed ID: 29806941
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of various light curing times on the elution of composite components.
    Högg C; Maier M; Dettinger-Maier K; He X; Rothmund L; Kehe K; Hickel R; Reichl FX
    Clin Oral Investig; 2016 Nov; 20(8):2113-2121. PubMed ID: 26707337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-curing, self-etching adhesive cement systems.
    Salz U; Zimmermann J; Salzer T
    J Adhes Dent; 2005; 7(1):7-17. PubMed ID: 15892359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanical, Electrical and Magnetic Properties of Ferrogels with Embedded Iron Oxide Nanoparticles Obtained by Laser Target Evaporation: Focus on Multifunctional Biosensor Applications.
    Blyakhman FA; Buznikov NA; Sklyar TF; Safronov AP; Golubeva EV; Svalov AV; Sokolov SY; Melnikov GY; Orue I; Kurlyandskaya GV
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29543746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA.
    Barszczewska-Rybarek IM
    Dent Mater; 2009 Sep; 25(9):1082-9. PubMed ID: 19375156
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on the Curing Efficiency and Mechanical Properties of Bis-GMA and TEGDMA Nanocomposites Containing Silver Nanoparticles.
    Barszczewska-Rybarek I; Chladek G
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controllable preparation of high-yield magnetic polymer latex.
    Wu CC; Kong XM; Yang HL
    J Colloid Interface Sci; 2011 Sep; 361(1):49-58. PubMed ID: 21645903
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Smart Magnetically Active Nanovehicle for on-Demand Targeted Drug Delivery: Where van der Waals Force Balances the Magnetic Interaction.
    Panja S; Maji S; Maiti TK; Chattopadhyay S
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24229-41. PubMed ID: 26458134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Niobium pentoxide phosphate invert glass as a mineralizing agent in an experimental orthodontic adhesive.
    Altmann ASP; Collares FM; Balbinot GS; Leitune VCB; Takimi AS; Samuel SMW
    Angle Orthod; 2017 Sep; 87(5):759-765. PubMed ID: 28686093
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetically Responsive Assemblies of Polymer-Brush-Decorated Nanoparticle Clusters That Exhibit Structural Color.
    Ohno K; Sakaue M; Mori C
    Langmuir; 2018 Aug; 34(32):9532-9539. PubMed ID: 30036070
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cascade catalysis-initiated radical polymerization amplified impedimetric immunosensor for ultrasensitive detection of carbohydrate antigen 15-3.
    Zhang C; Zhang D; Ma Z; Han H
    Biosens Bioelectron; 2019 Jul; 137():1-7. PubMed ID: 31063886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new approach to network heterogeneity: Polymerization Induced Phase Separation in photo-initiated, free-radical methacrylic systems.
    Szczepanski CR; Pfeifer CS; Stansbury JW
    Polymer (Guildf); 2012 Sep; 53(21):4694-4701. PubMed ID: 23109733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors.
    Li S; Zhou H; Li Y; Jin X; Liu H; Lai J; Wu Y; Chen W; Ma A
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):431-439. PubMed ID: 34509117
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanosystems Based on Magnetic Nanoparticles and Thermo- or pH-Responsive Polymers: An Update and Future Perspectives.
    Mai BT; Fernandes S; Balakrishnan PB; Pellegrino T
    Acc Chem Res; 2018 May; 51(5):999-1013. PubMed ID: 29733199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polymerization behavior of hydrophilic-rich phase of dentin adhesive.
    Abedin F; Ye Q; Parthasarathy R; Misra A; Spencer P
    J Dent Res; 2015 Mar; 94(3):500-7. PubMed ID: 25576471
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modular Fabrication of Polymer Brush Coated Magnetic Nanoparticles: Engineering the Interface for Targeted Cellular Imaging.
    Oz Y; Arslan M; Gevrek TN; Sanyal R; Sanyal A
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19813-26. PubMed ID: 27406320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formulation and characterization of a covalently coated magnetic nanogel.
    Rahimi M; Yousef M; Cheng Y; Meletis EI; Eberhart RC; Nguyen K
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4128-34. PubMed ID: 19916419
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrahigh magnetically responsive microplatelets with tunable fluorescence emission.
    Libanori R; Reusch FB; Erb RM; Studart AR
    Langmuir; 2013 Nov; 29(47):14674-80. PubMed ID: 24175712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.