These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34843227)

  • 1. Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffraction.
    Toso S; Baranov D; Giannini C; Manna L
    ACS Nano; 2021 Dec; 15(12):20341-20352. PubMed ID: 34843227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Synthesis of Colloidal Lead Halide Perovskite Nanoplatelets via Ligand-Assisted Reprecipitation.
    Ha SK; Tisdale WA
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Assembly and Anomalous Thermal Expansion of Ultrathin Cesium Lead Bromide Nanoplatelets.
    Krajewska CJ; Kaplan AEK; Kick M; Berkinsky DB; Zhu H; Sverko T; Van Voorhis T; Bawendi MG
    Nano Lett; 2023 Mar; 23(6):2148-2157. PubMed ID: 36884029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyan Emission in Two-Dimensional Colloidal Cs
    Locardi F; Samoli M; Martinelli A; Erdem O; Magalhaes DV; Bals S; Hens Z
    ACS Nano; 2021 Nov; 15(11):17729-17737. PubMed ID: 34668701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metamorphoses of Cesium Lead Halide Nanocrystals.
    Toso S; Baranov D; Manna L
    Acc Chem Res; 2021 Feb; 54(3):498-508. PubMed ID: 33411494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A-Site Cation Influence on the Structural and Optical Evolution of Ultrathin Lead Halide Perovskite Nanoplatelets.
    Krajewska CJ; Kick M; Kaplan AEK; Berkinsky DB; Zhu H; Sverko T; Van Voorhis T; Bawendi MG
    ACS Nano; 2024 Mar; 18(11):8248-8258. PubMed ID: 38428021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.
    Weidman MC; Seitz M; Stranks SD; Tisdale WA
    ACS Nano; 2016 Aug; 10(8):7830-9. PubMed ID: 27471862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous Self-Assembly of Cesium Lead Halide Perovskite Nanoplatelets into Cuboid Crystals with High Intensity Blue Emission.
    Bi C; Wang S; Kershaw SV; Zheng K; Pullerits T; Gaponenko S; Tian J; Rogach AL
    Adv Sci (Weinh); 2019 Jul; 6(13):1900462. PubMed ID: 31380191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoplatelet Superlattices by Tin-Induced Transformation of FAPbI
    Hazra V; Mondal S; Pattanayak P; Bhattacharyya S
    Small; 2024 Feb; 20(8):e2304920. PubMed ID: 37817355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Inorganic Ruddlesden-Popper Double Cl-I and Triple Cl-Br-I Lead Halide Perovskite Nanocrystals.
    Akkerman QA; Bladt E; Petralanda U; Dang Z; Sartori E; Baranov D; Abdelhady AL; Infante I; Bals S; Manna L
    Chem Mater; 2019 Mar; 31(6):2182-2190. PubMed ID: 32952295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous production of ultrathin organic-inorganic Ruddlesden-Popper perovskite nanoplatelets via a flow reactor.
    Biesold GM; Liang S; Wagner BK; Kang Z; Lin Z
    Nanoscale; 2021 Aug; 13(30):13108-13115. PubMed ID: 34477794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective Diffraction Effects in Perovskite Nanocrystal Superlattices.
    Toso S; Baranov D; Filippi U; Giannini C; Manna L
    Acc Chem Res; 2023 Jan; 56(1):66-76. PubMed ID: 36534898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Passivation for Promotes Bi-Excitonic Amplified Spontaneous Emission in CsPb(Br/Cl)
    Qaid SMH; Ghaithan HM; Bawazir HS; Aldwayyan AS
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doping Mn(II) in All-Inorganic Ruddlesden-Popper Phase of Tetragonal Cs
    Dutta A; Behera RK; Deb S; Baitalik S; Pradhan N
    J Phys Chem Lett; 2019 Apr; 10(8):1954-1959. PubMed ID: 30943721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of air-stable two-dimensional nanoplatelets of Ruddlesden-Popper organic-inorganic hybrid perovskites.
    Cherusseri J; Varma SJ; Pradhan B; Li J; Kumar J; Barrios E; Amin MZ; Towers A; Gesquiere A; Thomas J
    Nanoscale; 2020 May; 12(18):10072-10081. PubMed ID: 32347841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BiOBr Surface-Functionalized Halide Double-Perovskite Films for Slow Ion Migration and Improved Stability.
    Bhawna ; Roy M; Kaur A; Alam A; Aslam M
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18473-18481. PubMed ID: 36976570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal Synthesis and Optical Properties of Perovskite-Inspired Cesium Zirconium Halide Nanocrystals.
    Abfalterer A; Shamsi J; Kubicki DJ; Savory CN; Xiao J; Divitini G; Li W; Macpherson S; GaƂkowski K; MacManus-Driscoll JL; Scanlon DO; Stranks SD
    ACS Mater Lett; 2020 Dec; 2(12):1644-1652. PubMed ID: 33313512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials.
    Piveteau L; Morad V; Kovalenko MV
    J Am Chem Soc; 2020 Nov; 142(46):19413-19437. PubMed ID: 32986955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal Structure, Morphology, and Surface Termination of Cyan-Emissive, Six-Monolayers-Thick CsPbBr
    Bertolotti F; Nedelcu G; Vivani A; Cervellino A; Masciocchi N; Guagliardi A; Kovalenko MV
    ACS Nano; 2019 Dec; 13(12):14294-14307. PubMed ID: 31747248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion migration mechanism in all-inorganic Ruddlesden-Popper lead halide perovskites by first-principles calculations.
    Zhao S; Xiao L
    Phys Chem Chem Phys; 2021 Dec; 24(1):403-410. PubMed ID: 34897315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.