These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34843405)

  • 41. Kinematic analysis of articulatory coupling in acquired apraxia of speech post-stroke.
    Bartle-Meyer CJ; Goozée JV; Murdoch BE; Green JR
    Brain Inj; 2009 Feb; 23(2):133-45. PubMed ID: 19191092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of Face Masks on Speech Acoustics and Vocal Effort in Healthcare Professionals.
    McKenna VS; Kendall CL; Patel TH; Howell RJ; Gustin RL
    Laryngoscope; 2022 Feb; 132(2):391-397. PubMed ID: 34287933
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlation of orofacial speeds with voice acoustic measures in the fluent speech of persons who stutter.
    McClean MD; Tasko SM
    Exp Brain Res; 2004 Dec; 159(3):310-8. PubMed ID: 15248043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Articulatory-to-acoustic relations in response to speaking rate and loudness manipulations.
    Mefferd AS; Green JR
    J Speech Lang Hear Res; 2010 Oct; 53(5):1206-19. PubMed ID: 20699341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Interaction of Surface Hydration and Vocal Loading on Voice Measures.
    Fujiki RB; Chapleau A; Sundarrajan A; McKenna V; Sivasankar MP
    J Voice; 2017 Mar; 31(2):211-217. PubMed ID: 27522343
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Treatment of vocal symptoms in Parkinson's disease: the Lee Silverman method].
    Dias AE; Limongi JC
    Arq Neuropsiquiatr; 2003 Mar; 61(1):61-6. PubMed ID: 12715021
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Speaking Clearly for the Blind: Acoustic and Articulatory Correlates of Speaking Conditions in Sighted and Congenitally Blind Speakers.
    Ménard L; Trudeau-Fisette P; Côté D; Turgeon C
    PLoS One; 2016; 11(9):e0160088. PubMed ID: 27643997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acoustic and kinematic analyses of Mandarin vowels in speakers with hearing impairment.
    Xue P; Zhang X; Bai J; Wang Z
    Clin Linguist Phon; 2018; 32(7):622-639. PubMed ID: 29265931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The contrast between alveolar and velar stops with typical speech data: acoustic and articulatory analyses.
    Melo RM; Mota HB; Berti LC
    Codas; 2017 Jun; 29(3):e20160117. PubMed ID: 28614459
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Articulatory changes following treatment of muscle tension dysphonia: preliminary acoustic evidence.
    Dromey C; Nissen SL; Roy N; Merrill RM
    J Speech Lang Hear Res; 2008 Feb; 51(1):196-208. PubMed ID: 18230866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relationship Between Tasked Vocal Effort Levels and Measures of Vocal Intensity.
    Hunter EJ; Berardi ML; van Mersbergen M
    J Speech Lang Hear Res; 2021 Jun; 64(6):1829-1840. PubMed ID: 34057833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Psychometric Properties of Rapid Word-Based Rate Measures in the Assessment of Bulbar Amyotrophic Lateral Sclerosis: Comparisons With Syllable-Based Rate Tasks.
    Shellikeri S; Marzouqah R; Brooks BR; Zinman L; Green JR; Yunusova Y
    J Speech Lang Hear Res; 2021 Nov; 64(11):4178-4191. PubMed ID: 34699273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The acoustic counterpart to coarticulation resistance and aggressiveness in locus equation metrics and vowel dispersion.
    Bang HY
    J Acoust Soc Am; 2017 Apr; 141(4):EL345. PubMed ID: 28464651
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis.
    McGowan RS; Cushing S
    J Acoust Soc Am; 1999 Aug; 106(2):1090-105. PubMed ID: 10462814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tongue- and Jaw-Specific Contributions to Acoustic Vowel Contrast Changes in the Diphthong /ai/ in Response to Slow, Loud, and Clear Speech.
    Mefferd AS
    J Speech Lang Hear Res; 2017 Nov; 60(11):3144-3158. PubMed ID: 29067400
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Test-Retest Reliability of Relative Fundamental Frequency and Conventional Acoustic, Aerodynamic, and Perceptual Measures in Individuals With Healthy Voices.
    Park Y; Stepp CE
    J Speech Lang Hear Res; 2019 Jun; 62(6):1707-1718. PubMed ID: 31181173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immediate Effects of a Semi-Occluded Water Resistance Ventilation Mask on Objective and Subjective Vocal Outcomes in Musical Theater Students.
    Meerschman I; Van Lierde K; Redman YG; Becker L; Benoy A; Kissel I; Leyns C; Daelman J; D'haeseleer E
    J Speech Lang Hear Res; 2020 Mar; 63(3):661-673. PubMed ID: 32196393
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prevalence of vocal fry in young adult male American English speakers.
    Abdelli-Beruh NB; Wolk L; Slavin D
    J Voice; 2014 Mar; 28(2):185-90. PubMed ID: 24315658
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Compensation for a lip-tube perturbation in 4-year-olds: Articulatory, acoustic, and perceptual data analyzed in comparison with adults.
    Ménard L; Perrier P; Aubin J
    J Acoust Soc Am; 2016 May; 139(5):2514. PubMed ID: 27250147
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vowel acoustics in Parkinson's disease and multiple sclerosis: comparison of clear, loud, and slow speaking conditions.
    Tjaden K; Lam J; Wilding G
    J Speech Lang Hear Res; 2013 Oct; 56(5):1485-502. PubMed ID: 23838989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.