These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 34843467)

  • 1. Identification of enzymes that have helminth-specific active sites and are required for Rhodoquinone-dependent metabolism as targets for new anthelmintics.
    Lautens MJ; Tan JH; Serrat X; Del Borrello S; Schertzberg MR; Fraser AG
    PLoS Negl Trop Dis; 2021 Nov; 15(11):e0009991. PubMed ID: 34843467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodoquinone biosynthesis in
    Del Borrello S; Lautens M; Dolan K; Tan JH; Davie T; Schertzberg MR; Spensley MA; Caudy AA; Fraser AG
    Elife; 2019 Jun; 8():. PubMed ID: 31232688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current drug targets for helminthic diseases.
    Rana AK; Misra-Bhattacharya S
    Parasitol Res; 2013 May; 112(5):1819-31. PubMed ID: 23529336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths.
    Matoušková P; Vokřál I; Lamka J; Skálová L
    Trends Parasitol; 2016 Jun; 32(6):481-491. PubMed ID: 26968642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthelmintic metabolism in parasitic helminths: proteomic insights.
    Brophy PM; MacKintosh N; Morphew RM
    Parasitology; 2012 Aug; 139(9):1205-17. PubMed ID: 22776506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HelmCoP: an online resource for helminth functional genomics and drug and vaccine targets prioritization.
    Abubucker S; Martin J; Taylor CM; Mitreva M
    PLoS One; 2011; 6(7):e21832. PubMed ID: 21760913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that ubiquinone is a required intermediate for rhodoquinone biosynthesis in Rhodospirillum rubrum.
    Brajcich BC; Iarocci AL; Johnstone LA; Morgan RK; Lonjers ZT; Hotchko MJ; Muhs JD; Kieffer A; Reynolds BJ; Mandel SM; Marbois BN; Clarke CF; Shepherd JN
    J Bacteriol; 2010 Jan; 192(2):436-45. PubMed ID: 19933361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontiers in parasite neurobiology: parasite genomics, neural signalling and new targets for control.
    Wolstenholme AJ; Bowman AS; Sattelle DB
    Invert Neurosci; 2007 Dec; 7(4):179-81. PubMed ID: 18038172
    [No Abstract]   [Full Text] [Related]  

  • 9. Rhodoquinone in bacteria and animals: Two distinct pathways for biosynthesis of this key electron transporter used in anaerobic bioenergetics.
    Salinas G; Langelaan DN; Shepherd JN
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148278. PubMed ID: 32735860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative splicing of
    Tan JH; Lautens M; Romanelli-Cedrez L; Wang J; Schertzberg MR; Reinl SR; Davis RE; Shepherd JN; Fraser AG; Salinas G
    Elife; 2020 Aug; 9():. PubMed ID: 32744503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forty years of helminth biochemistry.
    Barrett J
    Parasitology; 2009 Oct; 136(12):1633-42. PubMed ID: 19265562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes.
    Van Hellemond JJ; Klockiewicz M; Gaasenbeek CP; Roos MH; Tielens AG
    J Biol Chem; 1995 Dec; 270(52):31065-70. PubMed ID: 8537365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kynurenine pathway is essential for rhodoquinone biosynthesis in
    Roberts Buceta PM; Romanelli-Cedrez L; Babcock SJ; Xun H; VonPaige ML; Higley TW; Schlatter TD; Davis DC; Drexelius JA; Culver JC; Carrera I; Shepherd JN; Salinas G
    J Biol Chem; 2019 Jul; 294(28):11047-11053. PubMed ID: 31177094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective mechanisms of helminths against reactive oxygen species are highly promising drug targets.
    Perbandt M; Ndjonka D; Liebau E
    Curr Med Chem; 2014; 21(15):1794-808. PubMed ID: 24251574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths.
    Cvilink V; Lamka J; Skálová L
    Drug Metab Rev; 2009; 41(1):8-26. PubMed ID: 19514969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel insights in the fecal egg count reduction test for monitoring drug efficacy against soil-transmitted helminths in large-scale treatment programs.
    Levecke B; Speybroeck N; Dobson RJ; Vercruysse J; Charlier J
    PLoS Negl Trop Dis; 2011 Dec; 5(12):e1427. PubMed ID: 22180801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance.
    Kerboeuf D; Blackhall W; Kaminsky R; von Samson-Himmelstjerna G
    Int J Antimicrob Agents; 2003 Sep; 22(3):332-46. PubMed ID: 13678840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodoquinone reaction site of mitochondrial complex I, in parasitic helminth, Ascaris suum.
    Yamashita T; Ino T; Miyoshi H; Sakamoto K; Osanai A; Nakamaru-Ogiso E; Kita K
    Biochim Biophys Acta; 2004 Feb; 1608(2-3):97-103. PubMed ID: 14871486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protein and microRNA cargo of extracellular vesicles from parasitic helminths - current status and research priorities.
    Sotillo J; Robinson MW; Kimber MJ; Cucher M; Ancarola ME; Nejsum P; Marcilla A; Eichenberger RM; Tritten L
    Int J Parasitol; 2020 Aug; 50(9):635-645. PubMed ID: 32652128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi.
    Bilsland E; Bean DM; Devaney E; Oliver SG
    PLoS Negl Trop Dis; 2016 Jan; 10(1):e0004401. PubMed ID: 26812604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.