These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34843481)

  • 1. An aromatic imidazoline derived from chloroquinoline triggers cell cycle arrest and inhibits with high selectivity the Trypanosoma cruzi mammalian host-cells infection.
    Cuevas-Hernández RI; Girard RMBM; Krstulović L; Bajić M; Silber AM
    PLoS Negl Trop Dis; 2021 Nov; 15(11):e0009994. PubMed ID: 34843481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Aromatic Diamidine That Targets Kinetoplast DNA, Impairs the Cell Cycle in Trypanosoma cruzi, and Diminishes Trypomastigote Release from Infected Mammalian Host Cells.
    Girard RM; Crispim M; Stolić I; Damasceno FS; Santos da Silva M; Pral EM; Elias MC; Bajić M; Silber AM
    Antimicrob Agents Chemother; 2016 Oct; 60(10):5867-77. PubMed ID: 27431229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammea type coumarins isolated from Calophyllum brasiliense induced apoptotic cell death of Trypanosoma cruzi through mitochondrial dysfunction, ROS production and cell cycle alterations.
    Rodríguez-Hernández KD; Martínez I; Reyes-Chilpa R; Espinoza B
    Bioorg Chem; 2020 Jul; 100():103894. PubMed ID: 32388434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Trypanosoma cruzi activity of costic acid isolated from Nectandra barbellata (Lauraceae) is associated with alterations in plasma membrane electric and mitochondrial membrane potentials.
    Londero VS; Costa-Silva TA; Tempone AG; Namiyama GM; Thevenard F; Antar GM; Baitello JB; Lago JHG
    Bioorg Chem; 2020 Jan; 95():103510. PubMed ID: 31884137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4-Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi.
    Britta EA; Scariot DB; Falzirolli H; da Silva CC; Ueda-Nakamura T; Dias Filho BP; Borsali R; Nakamura CV
    Parasitology; 2015 Jun; 142(7):978-88. PubMed ID: 25711881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, structure-activity relationship and trypanocidal activity of pyrazole-imidazoline and new pyrazole-tetrahydropyrimidine hybrids as promising chemotherapeutic agents for Chagas disease.
    Monteiro ME; Lechuga G; Lara LS; Souto BA; Viganó MG; Bourguignon SC; Calvet CM; Oliveira FOR; Alves CR; Souza-Silva F; Santos MS; Pereira MCS
    Eur J Med Chem; 2019 Nov; 182():111610. PubMed ID: 31434040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Fluorinated Phenylbenzothiazole Arrests the Trypanosoma cruzi Cell Cycle and Diminishes the Infection of Mammalian Host Cells.
    Cuevas-Hernández RI; Girard RMBM; Martínez-Cerón S; Santos da Silva M; Elias MC; Crispim M; Trujillo-Ferrara JG; Silber AM
    Antimicrob Agents Chemother; 2020 Jan; 64(2):. PubMed ID: 31712204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of 4-((1-(1H-imidazol-2-yl)alkoxy)methyl)pyridines as a new class of Trypanosoma cruzi growth inhibitors.
    Ponzi S; Bresciani A; Kaiser M; Nardi V; Nizi E; Ontoria JM; Pace P; Paonessa G; Summa V; Harper S
    Bioorg Med Chem Lett; 2020 Apr; 30(8):127052. PubMed ID: 32113841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanocidal action of eupomatenoid-5 is related to mitochondrion dysfunction and oxidative damage in Trypanosoma cruzi.
    Pelizzaro-Rocha KJ; Veiga-Santos P; Lazarin-Bidóia D; Ueda-Nakamura T; Dias Filho BP; Ximenes VF; Silva SO; Nakamura CV
    Microbes Infect; 2011 Nov; 13(12-13):1018-24. PubMed ID: 21683800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the drug-likeness of inspiring natural products - evaluation of the antiparasitic activity against Trypanosoma cruzi through semi-synthetic and simplified analogues of licarin A.
    Morais TR; Conserva GAA; Varela MT; Costa-Silva TA; Thevenard F; Ponci V; Fortuna A; Falcão AC; Tempone AG; Fernandes JPS; Lago JHG
    Sci Rep; 2020 Mar; 10(1):5467. PubMed ID: 32214193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Butenolides from Nectandra oppositifolia (Lauraceae) displayed anti-Trypanosoma cruzi activity via deregulation of mitochondria.
    Conserva GAA; da Costa-Silva TA; Amaral M; Antar GM; Neves BJ; Andrade CH; Tempone AG; Lago JHG
    Phytomedicine; 2019 Feb; 54():302-307. PubMed ID: 30668381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypanocidal activity and selectivity in vitro of aromatic amidine compounds upon bloodstream and intracellular forms of Trypanosoma cruzi.
    De Souza EM; da Silva PB; Nefertiti AS; Ismail MA; Arafa RK; Tao B; Nixon-Smith CK; Boykin DW; Soeiro MN
    Exp Parasitol; 2011 Feb; 127(2):429-35. PubMed ID: 20971106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of NAD+-dependent histone deacetylases (sirtuins) causes growth arrest and activates both apoptosis and autophagy in the pathogenic protozoan Trypanosoma cruzi.
    Veiga-Santos P; Reignault LC; Huber K; Bracher F; De Souza W; De Carvalho TM
    Parasitology; 2014 May; 141(6):814-25. PubMed ID: 24670415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles.
    Bombaça ACS; Viana PG; Santos ACC; Silva TL; Rodrigues ABM; Guimarães ACR; Goulart MOF; da Silva Júnior EN; Menna-Barreto RFS
    Free Radic Biol Med; 2019 Jan; 130():408-418. PubMed ID: 30445126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amaryllidaceae plants: a potential natural resource for the treatment of Chagas disease.
    Martínez-Peinado N; Cortes-Serra N; Tallini LR; Pinazo MJ; Gascon J; Bastida J; Alonso-Padilla J
    Parasit Vectors; 2021 Jun; 14(1):337. PubMed ID: 34174959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desing and synthesis of potent anti-Trypanosoma cruzi agents new thiazoles derivatives which induce apoptotic parasite death.
    da Silva EB; Oliveira E Silva DA; Oliveira AR; da Silva Mendes CH; Dos Santos TA; da Silva AC; de Castro MC; Ferreira RS; Moreira DR; Cardoso MV; de Simone CA; Pereira VR; Leite AC
    Eur J Med Chem; 2017 Apr; 130():39-50. PubMed ID: 28242550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parasite-Mediated Remodeling of the Host Microfilament Cytoskeleton Enables Rapid Egress of Trypanosoma cruzi following Membrane Rupture.
    Ferreira ER; Bonfim-Melo A; Burleigh BA; Costales JA; Tyler KM; Mortara RA
    mBio; 2021 Jun; 12(3):e0098821. PubMed ID: 34154418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights of antiparasitic activity of sodium diethyldithiocarbamate against different strains of Trypanosoma cruzi.
    de Freitas Oliveira JW; Torres TM; Moreno CJG; Amorim-Carmo B; Damasceno IZ; Soares AKMC; da Silva Barbosa J; Rocha HAO; Silva MS
    Sci Rep; 2021 May; 11(1):11200. PubMed ID: 34045624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-Trypanosoma cruzi action of a new benzofuran derivative based on amiodarone structure.
    Pinto-Martinez A; Hernández-Rodríguez V; Rodríguez-Durán J; Hejchman E; Benaim G
    Exp Parasitol; 2018 Jun; 189():8-15. PubMed ID: 29684665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the structure-activity relationships of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides against Trypanosoma cruzi to design novel active compounds.
    Palace-Berl F; Pasqualoto KFM; Zingales B; Moraes CB; Bury M; Franco CH; da Silva Neto AL; Murayama JS; Nunes SL; Silva MN; Tavares LC
    Eur J Med Chem; 2018 Jan; 144():29-40. PubMed ID: 29247858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.