These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34843603)

  • 21. Improving reliability of live/dead cell counting through automated image mosaicing.
    Piccinini F; Tesei A; Paganelli G; Zoli W; Bevilacqua A
    Comput Methods Programs Biomed; 2014 Dec; 117(3):448-63. PubMed ID: 25438936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An automatic image analysis approach to quantify stained cell cultures.
    Glory E; Derocle G; Ollivier N; Meas-Yedid V; Stamon G; Pinset C; Olivo-Marin JC
    Cell Mol Biol (Noisy-le-grand); 2007 Apr; 53(2):44-50. PubMed ID: 17531139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast and accurate automated recognition of the dominant cells from fecal images based on Faster R-CNN.
    Zhang J; Wang X; Ni G; Liu J; Hao R; Liu L; Liu Y; Du X; Xu F
    Sci Rep; 2021 May; 11(1):10361. PubMed ID: 33990662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic Localization and Count of Agricultural Crop Pests Based on an Improved Deep Learning Pipeline.
    Li W; Chen P; Wang B; Xie C
    Sci Rep; 2019 May; 9(1):7024. PubMed ID: 31065055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell counting tool parameters optimization approach for electroporation efficiency determination of attached cells in phase contrast images.
    Usaj M; Torkar D; Kanduser M; Miklavcic D
    J Microsc; 2011 Mar; 241(3):303-14. PubMed ID: 21118234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudo-nuclear staining of cells by deep learning improves the accuracy of automated cell counting in a label-free cellular population.
    Tsuzuki Y; Sanami S; Sugimoto K; Fujita S
    J Biosci Bioeng; 2021 Feb; 131(2):213-218. PubMed ID: 33077361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intact Detection of Highly Occluded Immature Tomatoes on Plants Using Deep Learning Techniques.
    Mu Y; Chen TS; Ninomiya S; Guo W
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using optimal transport theory to optimize a deep convolutional neural network microscopic cell counting method.
    Ding Y; Zheng Y; Han Z; Yang X
    Med Biol Eng Comput; 2023 Nov; 61(11):2939-2950. PubMed ID: 37532907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection.
    Choudhry P
    PLoS One; 2016; 11(2):e0148469. PubMed ID: 26848849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual Detection and Image Processing of Parking Space Based on Deep Learning.
    Huang C; Yang S; Luo Y; Wang Y; Liu Z
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A New Unsupervised Approach for Segmenting and Counting Cells in High-Throughput Microscopy Image Sets.
    Riccio D; Brancati N; Frucci M; Gragnaniello D
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):437-448. PubMed ID: 29994162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cervical cell classification with deep-learning algorithms.
    Xu L; Cai F; Fu Y; Liu Q
    Med Biol Eng Comput; 2023 Mar; 61(3):821-833. PubMed ID: 36626113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CELLCOUNTER: novel open-source software for counting cell migration and invasion in vitro.
    Li X; Yang H; Huang H; Zhu T
    Biomed Res Int; 2014; 2014():863564. PubMed ID: 25054152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic cell counting from stimulated Raman imaging using deep learning.
    Zhang Q; Yun KK; Wang H; Yoon SW; Lu F; Won D
    PLoS One; 2021; 16(7):e0254586. PubMed ID: 34288972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fine-tuned YOLOv5 deep learning approach for real-time house number detection.
    Taşyürek M; Öztürk C
    PeerJ Comput Sci; 2023; 9():e1453. PubMed ID: 37547390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient mitosis detection: leveraging pre-trained faster R-CNN and cell-level classification.
    R Shihabuddin A; Beevi K S
    Biomed Phys Eng Express; 2024 Feb; 10(2):. PubMed ID: 38357907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network.
    Cho BJ; Bang CS; Park SW; Yang YJ; Seo SI; Lim H; Shin WG; Hong JT; Yoo YT; Hong SH; Choi JH; Lee JJ; Baik GH
    Endoscopy; 2019 Dec; 51(12):1121-1129. PubMed ID: 31443108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.