BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34843643)

  • 1. Surface Hopping Dynamics with the Frenkel Exciton Model in a Semiempirical Framework.
    Gil ES; Granucci G; Persico M
    J Chem Theory Comput; 2021 Dec; 17(12):7373-7383. PubMed ID: 34843643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible Light Induced Exciton Dynamics and
    Titov E
    ACS Omega; 2024 Feb; 9(7):8520-8532. PubMed ID: 38405525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frenkel exciton photodynamics of self-assembled monolayers of azobiphenyls.
    Sangiogo Gil E; Persico M; Granucci G
    J Chem Phys; 2022 Oct; 157(16):161101. PubMed ID: 36319415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Hopping within an Exciton Picture. An Electrostatic Embedding Scheme.
    Menger MFSJ; Plasser F; Mennucci B; González L
    J Chem Theory Comput; 2018 Dec; 14(12):6139-6148. PubMed ID: 30299941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of Singlet Exciton Diffusion in Bulk Organic Materials.
    Kranz JJ; Elstner M
    J Chem Theory Comput; 2016 Sep; 12(9):4209-21. PubMed ID: 27434173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient implementation of semiempirical quantum-chemical orthogonalization-corrected methods for excited-state dynamics.
    Liu J; Thiel W
    J Chem Phys; 2018 Apr; 148(15):154103. PubMed ID: 29679961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.
    Morrison AF; Herbert JM
    J Chem Phys; 2017 Jun; 146(22):224110. PubMed ID: 29166040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Dynamics of Exciton Transport and Dissociation in Multichromophoric Systems.
    Popp W; Brey D; Binder R; Burghardt I
    Annu Rev Phys Chem; 2021 Apr; 72():591-616. PubMed ID: 33636997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (De)localization dynamics of molecular excitons: comparison of mixed quantum-classical and fully quantum treatments.
    Titov E; Kopp T; Hoche J; Humeniuk A; Mitrić R
    Phys Chem Chem Phys; 2022 May; 24(20):12136-12148. PubMed ID: 35506999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ab initio exciton model for singlet fission.
    Li X; Parrish RM; Martínez TJ
    J Chem Phys; 2020 Nov; 153(18):184116. PubMed ID: 33187442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast method for electronic couplings in embedded multichromophoric systems.
    Cignoni E; Cupellini L; Mennucci B
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35552268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials.
    Nelson T; Fernandez-Alberti S; Roitberg AE; Tretiak S
    Acc Chem Res; 2014 Apr; 47(4):1155-64. PubMed ID: 24673100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Photodynamics of
    Pieroni C; Sangiogo Gil E; Ibele LM; Persico M; Granucci G; Agostini F
    J Chem Theory Comput; 2024 Jan; 20(2):580-596. PubMed ID: 38177105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay between nonadiabatic dynamics and Frenkel exciton transfer in molecular aggregates: formulation and application to a perylene bismide model.
    Schröter M; Kühn O
    J Phys Chem A; 2013 Aug; 117(32):7580-8. PubMed ID: 23656426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of the photodynamics of azobenzene on its first excited state: comparison of full multiple spawning and surface hopping treatments.
    Toniolo A; Ciminelli C; Persico M; Martínez TJ
    J Chem Phys; 2005 Dec; 123(23):234308. PubMed ID: 16392921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Principles Nonadiabatic Excited-State Molecular Dynamics in NWChem.
    Song H; Fischer SA; Zhang Y; Cramer CJ; Mukamel S; Govind N; Tretiak S
    J Chem Theory Comput; 2020 Oct; 16(10):6418-6427. PubMed ID: 32808780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transfer and spatial scrambling of an exciton in a conjugated dendrimer.
    Ondarse-Alvarez D; Oldani N; Roitberg AE; Kleiman V; Tretiak S; Fernandez-Alberti S
    Phys Chem Chem Phys; 2018 Dec; 20(47):29648-29660. PubMed ID: 30465570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework.
    Sisto A; Glowacki DR; Martinez TJ
    Acc Chem Res; 2014 Sep; 47(9):2857-66. PubMed ID: 25186064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytic formulation of derivative coupling vectors for complete active space configuration interaction wavefunctions with floating occupation molecular orbitals.
    Hohenstein EG
    J Chem Phys; 2016 Nov; 145(17):174110. PubMed ID: 27825203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytic gradient and derivative couplings for the spin-flip extended configuration interaction singles method: Theory, implementation, and application to proton transfer.
    Liu J; Koslowski A; Thiel W
    J Chem Phys; 2018 Jun; 148(24):244108. PubMed ID: 29960378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.