These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34843643)

  • 21. Energy transfer and spatial scrambling of an exciton in a conjugated dendrimer.
    Ondarse-Alvarez D; Oldani N; Roitberg AE; Kleiman V; Tretiak S; Fernandez-Alberti S
    Phys Chem Chem Phys; 2018 Dec; 20(47):29648-29660. PubMed ID: 30465570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework.
    Sisto A; Glowacki DR; Martinez TJ
    Acc Chem Res; 2014 Sep; 47(9):2857-66. PubMed ID: 25186064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytic formulation of derivative coupling vectors for complete active space configuration interaction wavefunctions with floating occupation molecular orbitals.
    Hohenstein EG
    J Chem Phys; 2016 Nov; 145(17):174110. PubMed ID: 27825203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analytic gradient and derivative couplings for the spin-flip extended configuration interaction singles method: Theory, implementation, and application to proton transfer.
    Liu J; Koslowski A; Thiel W
    J Chem Phys; 2018 Jun; 148(24):244108. PubMed ID: 29960378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient implementation of spin-orbit coupling within the framework of semiempirical orthogonalization-corrected methods for ultrafast intersystem crossing dynamics.
    Liu J; Lan Z; Yang J
    Phys Chem Chem Phys; 2021 Oct; 23(39):22313-22323. PubMed ID: 34591049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonadiabatic Ab Initio Molecular Dynamics with the Floating Occupation Molecular Orbital-Complete Active Space Configuration Interaction Method.
    Hollas D; Šištík L; Hohenstein EG; Martínez TJ; Slavíček P
    J Chem Theory Comput; 2018 Jan; 14(1):339-350. PubMed ID: 29207238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Ab Initio Exciton Model Including Charge-Transfer Excited States.
    Li X; Parrish RM; Liu F; Kokkila Schumacher SIL; Martínez TJ
    J Chem Theory Comput; 2017 Aug; 13(8):3493-3504. PubMed ID: 28617595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model.
    Sisto A; Stross C; van der Kamp MW; O'Connor M; McIntosh-Smith S; Johnson GT; Hohenstein EG; Manby FR; Glowacki DR; Martinez TJ
    Phys Chem Chem Phys; 2017 Jun; 19(23):14924-14936. PubMed ID: 28430270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The symmetrical quasi-classical approach to electronically nonadiabatic dynamics applied to ultrafast exciton migration processes in semiconducting polymers.
    Liang R; Cotton SJ; Binder R; Hegger R; Burghardt I; Miller WH
    J Chem Phys; 2018 Jul; 149(4):044101. PubMed ID: 30068189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frenkel to Wannier-Mott Exciton Transition: Calculation of FRET Rates for a Tubular Dye Aggregate Coupled to a CdSe Nanocrystal.
    Plehn T; Ziemann D; Megow J; May V
    J Phys Chem B; 2015 Jun; 119(24):7467-72. PubMed ID: 25531181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence depolarization in poly[2-methoxy-5-((2-ethylhexyl)oxy)-1,4-phenylenevinylene]: sites versus eigenstates hopping.
    Singh J; Bittner ER; Beljonne D; Scholes GD
    J Chem Phys; 2009 Nov; 131(19):194905. PubMed ID: 19929074
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Yu JK; Bannwarth C; Hohenstein EG; Martínez TJ
    J Chem Theory Comput; 2020 Sep; 16(9):5499-5511. PubMed ID: 32786902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new efficient method for calculation of Frenkel exciton parameters in molecular aggregates.
    Plötz PA; Niehaus T; Kühn O
    J Chem Phys; 2014 May; 140(17):174101. PubMed ID: 24811619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectral densities for Frenkel exciton dynamics in molecular crystals: A TD-DFTB approach.
    Plötz PA; Megow J; Niehaus T; Kühn O
    J Chem Phys; 2017 Feb; 146(8):084112. PubMed ID: 28249454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonadiabatic Ensemble Simulations of cis-Stilbene and cis-Azobenzene Photoisomerization.
    Neukirch AJ; Shamberger LC; Abad E; Haycock BJ; Wang H; Ortega J; Prezhdo OV; Lewis JP
    J Chem Theory Comput; 2014 Jan; 10(1):14-23. PubMed ID: 26579888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The photoinduced E → Z isomerization of bisazobenzenes: a surface hopping molecular dynamics study.
    Floss G; Saalfrank P
    J Phys Chem A; 2015 May; 119(20):5026-37. PubMed ID: 25928321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoisomerization dynamics of spiropyran: A surface-hopping investigation.
    Granucci G; Padula G
    J Chem Phys; 2021 Mar; 154(12):124312. PubMed ID: 33810661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond fluorescence dynamics of rotation-restricted azobenzenophanes: new evidence on the mechanism of trans --> cis photoisomerization of azobenzene.
    Lu YC; Diau EW; Rau H
    J Phys Chem A; 2005 Mar; 109(10):2090-9. PubMed ID: 16838979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer.
    Peters WK; Tiwari V; Jonas DM
    J Chem Phys; 2017 Nov; 147(19):194306. PubMed ID: 29166106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron wavepacket dynamics in highly quasi-degenerate coupled electronic states: a theory for chemistry where the notion of adiabatic potential energy surface loses the sense.
    Yonehara T; Takatsuka K
    J Chem Phys; 2012 Dec; 137(22):22A520. PubMed ID: 23249057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.