BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34843684)

  • 1. Loss of plasma membrane lipid asymmetry can induce ordered domain (raft) formation.
    Kakuda S; Suresh P; Li G; London E
    J Lipid Res; 2022 Jan; 63(1):100155. PubMed ID: 34843684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles.
    Wang Q; London E
    Biophys J; 2018 Aug; 115(4):664-678. PubMed ID: 30082033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane Structure-Function Insights from Asymmetric Lipid Vesicles.
    London E
    Acc Chem Res; 2019 Aug; 52(8):2382-2391. PubMed ID: 31386337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of Ordered Lipid Raft Domain Formation by Loss of Lipid Asymmetry.
    St Clair JW; Kakuda S; London E
    Biophys J; 2020 Aug; 119(3):483-492. PubMed ID: 32710822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordered Domain (Raft) Formation in Asymmetric Vesicles and Its Induction upon Loss of Lipid Asymmetry in Artificial and Natural Membranes.
    London E
    Membranes (Basel); 2022 Sep; 12(9):. PubMed ID: 36135889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation.
    Cheng HT; Megha ; London E
    J Biol Chem; 2009 Mar; 284(10):6079-92. PubMed ID: 19129198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study.
    Lin WC; Blanchette CD; Ratto TV; Longo ML
    Biophys J; 2006 Jan; 90(1):228-37. PubMed ID: 16214871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells.
    Gidwani A; Holowka D; Baird B
    Biochemistry; 2001 Oct; 40(41):12422-9. PubMed ID: 11591163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving our picture of the plasma membrane: Rafts induce ordered domains in a simplified model cytoplasmic leaflet.
    Enoki TA; Feigenson GW
    Biochim Biophys Acta Biomembr; 2022 Oct; 1864(10):183995. PubMed ID: 35753393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles.
    St Clair JW; London E
    Biochim Biophys Acta Biomembr; 2019 Jun; 1861(6):1112-1122. PubMed ID: 30904407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking.
    Kiessling V; Crane JM; Tamm LK
    Biophys J; 2006 Nov; 91(9):3313-26. PubMed ID: 16905614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P; London E
    Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O; Pathak P; London E
    Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O).
    Lin Q; London E
    J Biol Chem; 2014 Feb; 289(9):5467-78. PubMed ID: 24398685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature.
    Cheng HT; London E
    Biophys J; 2011 Jun; 100(11):2671-8. PubMed ID: 21641312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids.
    Li G; Wang Q; Kakuda S; London E
    J Lipid Res; 2020 May; 61(5):758-766. PubMed ID: 31964764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric bilayers mimicking membrane rafts prepared by lipid exchange: Nanoscale characterization using AFM-Force spectroscopy.
    Vázquez RF; Ovalle-García E; Antillón A; Ortega-Blake I; Bakás LS; Muñoz-Garay C; Maté SM
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183467. PubMed ID: 32871116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilayer compositional asymmetry influences the nanoscopic to macroscopic phase domain size transition.
    Mohideen N; Weiner MD; Feigenson GW
    Chem Phys Lipids; 2020 Oct; 232():104972. PubMed ID: 32941827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.