BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34843741)

  • 1. Arginine and its Derivatives Suppress the Opalescence of an Antibody Solution.
    Oki S; Nishinami S; Nakauchi Y; Ogura T; Shiraki K
    J Pharm Sci; 2022 Apr; 111(4):1126-1132. PubMed ID: 34843741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine suppresses opalescence and liquid-liquid phase separation in IgG solutions.
    Oki S; Nishinami S; Shiraki K
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1708-1712. PubMed ID: 29981328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opalescence Arising from Network Assembly in Antibody Solution.
    Nakauchi Y; Nishinami S; Murakami Y; Ogura T; Kano H; Shiraki K
    Mol Pharm; 2022 Apr; 19(4):1160-1167. PubMed ID: 35274955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody.
    Yang TC; Langford AJ; Kumar S; Ruesch JC; Wang W
    J Pharm Sci; 2016 Aug; 105(8):2328-37. PubMed ID: 27373839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions.
    Raut AS; Kalonia DS
    J Pharm Sci; 2015 Apr; 104(4):1263-74. PubMed ID: 25556561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Opalescence in low Volume Monoclonal Antibody Solutions Enabled by Microscale Nephelometry.
    Kingsbury JS; Lantz MM; Saini A; Wang MZ; Gokarn YR
    J Pharm Sci; 2021 Sep; 110(9):3176-3182. PubMed ID: 34004217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.
    Raut AS; Kalonia DS
    Mol Pharm; 2016 May; 13(5):1431-44. PubMed ID: 27017836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge state of arginine as an additive on heat-induced protein aggregation.
    Miyatake T; Yoshizawa S; Arakawa T; Shiraki K
    Int J Biol Macromol; 2016 Jun; 87():563-9. PubMed ID: 26987431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opalescence of an IgG2 monoclonal antibody solution as it relates to liquid-liquid phase separation.
    Mason BD; Zhang L; Remmele RL; Zhang J
    J Pharm Sci; 2011 Nov; 100(11):4587-96. PubMed ID: 21638285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal aggregation of human immunoglobulin G in arginine solutions: Contrasting effects of stabilizers and destabilizers.
    Yoshizawa S; Arakawa T; Shiraki K
    Int J Biol Macromol; 2017 Nov; 104(Pt A):650-655. PubMed ID: 28647523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive evaluation of arginine and its derivatives as protein formulation stabilizers.
    Hada S; Burlakoti U; Kim KH; Han JS; Kim MJ; Kim NA; Jeong SH
    Int J Pharm; 2023 Nov; 647():123545. PubMed ID: 37871869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic and fluorescence analyses to determine mechanisms of IgG1 stabilization and destabilization by arginine.
    Fukuda M; Kameoka D; Torizawa T; Saitoh S; Yasutake M; Imaeda Y; Koga A; Mizutani A
    Pharm Res; 2014 Apr; 31(4):992-1001. PubMed ID: 24287623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Arginine Salts on the Thermal Stability and Aggregation Kinetics of Monoclonal Antibody: Dominant Role of Anions.
    Zhang J; Frey V; Corcoran M; Zhang-van Enk J; Subramony JA
    Mol Pharm; 2016 Oct; 13(10):3362-3369. PubMed ID: 27541006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular computations of preferential interactions of proline, arginine.HCl, and NaCl with IgG1 antibodies and their impact on aggregation and viscosity.
    Cloutier TK; Sudrik C; Mody N; Hasige SA; Trout BL
    MAbs; 2020; 12(1):1816312. PubMed ID: 32938318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opalescence Measurements: Improvements in Fundamental Knowledge, Identifying Sources of Analytical Biases, and Advanced Applications for the Development of Therapeutic Proteins.
    Barros M; Zhang X; Kenrick S; Valente JJ
    J Pharm Sci; 2021 Nov; 110(11):3550-3557. PubMed ID: 34111445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific decrease in solution viscosity of antibodies by arginine for therapeutic formulations.
    Inoue N; Takai E; Arakawa T; Shiraki K
    Mol Pharm; 2014 Jun; 11(6):1889-96. PubMed ID: 24689736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between L-arginine/L-arginine derivatives and lysozyme and implications to their inhibition effects on protein aggregation.
    Gao MT; Dong XY; Sun Y
    Biotechnol Prog; 2013; 29(5):1316-24. PubMed ID: 23794528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-Liquid Phase Separation in a Dual Variable Domain Immunoglobulin Protein Solution: Effect of Formulation Factors and Protein-Protein Interactions.
    Raut AS; Kalonia DS
    Mol Pharm; 2015 Sep; 12(9):3261-71. PubMed ID: 26237070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Excipient Effects on Reversible Self-Association, Backbone Flexibility, and Solution Properties of an IgG1 Monoclonal Antibody at High Concentrations: Part 1.
    Hu Y; Arora J; Joshi SB; Esfandiary R; Middaugh CR; Weis DD; Volkin DB
    J Pharm Sci; 2020 Jan; 109(1):340-352. PubMed ID: 31201906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transitions in human IgG solutions.
    Wang Y; Lomakin A; Latypov RF; Laubach JP; Hideshima T; Richardson PG; Munshi NC; Anderson KC; Benedek GB
    J Chem Phys; 2013 Sep; 139(12):121904. PubMed ID: 24089716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.