These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34843833)

  • 1. A study on activation mechanism in perspective of lignin structures and applicability of lignin-derived activated carbons for pollutant absorbent and supercapacitor electrode.
    Hwang H; Ajaz AM; Choi JW
    Chemosphere; 2022 Mar; 291(Pt 3):133045. PubMed ID: 34843833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-D hierarchical porous carbon from oxidized lignin by one-step activation for high-performance supercapacitor.
    Wan X; Shen F; Hu J; Huang M; Zhao L; Zeng Y; Tian D; Yang G; Zhang Y
    Int J Biol Macromol; 2021 Jun; 180():51-60. PubMed ID: 33727185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin-based adsorbent-catalyst with high capacity and stability for polychlorinated aromatics removal.
    Guo H; Chen Y; Yang S; Li R; Zhang X; Dong Q; Li X; Ma X
    Bioresour Technol; 2021 Oct; 337():125453. PubMed ID: 34320738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct conversion of lignin-rich black liquor to activated carbon for supercapacitor electrodes.
    Jain K; Singh M; Yadav K; Saharan P; Gupta A; Dhakate SR
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132150. PubMed ID: 38729470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Materials from Technical Lignins: Recent Advances.
    Puziy AM; Poddubnaya OI; Sevastyanova O
    Top Curr Chem (Cham); 2018 Jul; 376(4):33. PubMed ID: 29995273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.
    Nabais JM; Gomes JA; Suhas ; Carrott PJ; Laginhas C; Roman S
    J Hazard Mater; 2009 Aug; 167(1-3):904-10. PubMed ID: 19233559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pretreatment of lignocellulosic waste as a precursor for synthesis of high porous activated carbon and its application for Pb (II) and Cr (VI) adsorption from aqueous solutions.
    Kharrazi SM; Soleimani M; Jokar M; Richards T; Pettersson A; Mirghaffari N
    Int J Biol Macromol; 2021 Jun; 180():299-310. PubMed ID: 33737183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors.
    Gonzalez-Serrano E; Cordero T; Rodriguez-Mirasol J; Cotoruelo L; Rodriguez JJ
    Water Res; 2004 Jul; 38(13):3043-50. PubMed ID: 15261542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production, characterization and application of activated carbon from brewer's spent grain lignin.
    Mussatto SI; Fernandes M; Rocha GJ; Orfão JJ; Teixeira JA; Roberto IC
    Bioresour Technol; 2010 Apr; 101(7):2450-7. PubMed ID: 20004569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency removal of benzene vapor using activated carbon from Althaea officinalis L. biomass as a lignocellulosic precursor.
    Isinkaralar K
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66728-66740. PubMed ID: 35507228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon.
    Saha D; Li Y; Bi Z; Chen J; Keum JK; Hensley DK; Grappe HA; Meyer HM; Dai S; Paranthaman MP; Naskar AK
    Langmuir; 2014 Jan; 30(3):900-10. PubMed ID: 24400670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Porous and High Surface Area Tubular Carbon as Dye Adsorbent and Capacitor Electrode.
    Chen L; Ji T; Brisbin L; Zhu J
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12230-7. PubMed ID: 25980528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sewage biogas efficient purification by means of lignocellulosic waste-based activated carbons.
    Santos-Clotas E; Cabrera-Codony A; Ruiz B; Fuente E; Martín MJ
    Bioresour Technol; 2019 Mar; 275():207-215. PubMed ID: 30590207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of in-situ nitrogen-doped lignin-based porous carbon and its efficient adsorption of chloramphenicol in water.
    Chen A; Zhang Y; Wei X; Pang J; Hu R; Guan J
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74306-74318. PubMed ID: 35635670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignin--from natural adsorbent to activated carbon: a review.
    Suhas ; Carrott PJ; Ribeiro Carrott MM
    Bioresour Technol; 2007 Sep; 98(12):2301-12. PubMed ID: 17055259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional hierarchical porous lignin-derived carbon/WO
    Shi F; Li J; Xiao J; Zhao X; Li H; An Q; Zhai S; Wang K; Wei L; Tong Y
    Int J Biol Macromol; 2021 Nov; 190():11-18. PubMed ID: 34478791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast one-step preparation of porous carbon with hierarchical oxygen-enriched structure from waste lignin for chloramphenicol removal.
    Chen A; Pang J; Wei X; Chen B; Xie Y
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):27398-27410. PubMed ID: 33506419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yerba mate: From waste to activated carbon for supercapacitors.
    Jerez F; Ramos PB; Córdoba VE; Ponce MF; Acosta GG; Bavio MA
    J Environ Manage; 2023 Mar; 330():117158. PubMed ID: 36603253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of pyrochar and hydrochar derived activated carbons for biosorbent and supercapacitor materials.
    Hwang H; Lee JH; Ahmed MA; Choi JW
    J Environ Manage; 2021 Nov; 298():113436. PubMed ID: 34358935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From waste to value-added products: Evaluation of activated carbon generated from leather waste for supercapacitor applications.
    El-Hout SI; Attia SY; Mohamed SG; Abdelbasir SM
    J Environ Manage; 2022 Feb; 304():114222. PubMed ID: 34871869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.