BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 34843893)

  • 1. Learning Spatial-Spectral-Temporal EEG Representations with Deep Attentive-Recurrent-Convolutional Neural Networks for Pain Intensity Assessment.
    Wu F; Mai W; Tang Y; Liu Q; Chen J; Guo Z
    Neuroscience; 2022 Jan; 481():144-155. PubMed ID: 34843893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An end-to-end 3D convolutional neural network for decoding attentive mental state.
    Zhang Y; Cai H; Nie L; Xu P; Zhao S; Guan C
    Neural Netw; 2021 Dec; 144():129-137. PubMed ID: 34492547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral and Temporal Feature Learning With Two-Stream Neural Networks for Mental Workload Assessment.
    Zhang P; Wang X; Chen J; You W; Zhang W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1149-1159. PubMed ID: 31034417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-based emotion recognition with deep convolutional neural networks.
    Ozdemir MA; Degirmenci M; Izci E; Akan A
    Biomed Tech (Berl); 2020 Aug; ():. PubMed ID: 32845859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Convolutional Neural Network Applied to Electroencephalography: Raw Data vs Spectral Features.
    Truong D; Milham M; Makeig S; Delorme A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1039-1042. PubMed ID: 34891466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG Emotion Recognition via Graph-based Spatio-Temporal Attention Neural Networks.
    Sartipi S; Torkamani-Azar M; Cetin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():571-574. PubMed ID: 34891358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Invariant Representations from EEG via Adversarial Inference.
    Özdenizci O; Wang YE; Koike-Akino T; ErdoĞmuŞ D
    IEEE Access; 2020; 8():27074-27085. PubMed ID: 33747669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning Spatial-Spectral-Temporal EEG Features With Recurrent 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment.
    Zhang P; Wang X; Zhang W; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):31-42. PubMed ID: 30507536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FetchEEG: a hybrid approach combining feature extraction and temporal-channel joint attention for EEG-based emotion classification.
    Liang Y; Zhang C; An S; Wang Z; Shi K; Peng T; Ma Y; Xie X; He J; Zheng K
    J Neural Eng; 2024 May; 21(3):. PubMed ID: 38701773
    [No Abstract]   [Full Text] [Related]  

  • 12. A Channel-Projection Mixed-Scale Convolutional Neural Network for Motor Imagery EEG Decoding.
    Li Y; Zhang XR; Zhang B; Lei MY; Cui WG; Guo YZ
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1170-1180. PubMed ID: 31071048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4D attention-based neural network for EEG emotion recognition.
    Xiao G; Shi M; Ye M; Xu B; Chen Z; Ren Q
    Cogn Neurodyn; 2022 Aug; 16(4):805-818. PubMed ID: 35847538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ensemble deep-learning approach for single-trial EEG classification of vibration intensity.
    Alsuradi H; Park W; Eid M
    J Neural Eng; 2023 Sep; 20(5):. PubMed ID: 37732958
    [No Abstract]   [Full Text] [Related]  

  • 15. Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification.
    Emsawas T; Morita T; Kimura T; Fukui KI; Numao M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
    Lu X; Chen Y; Li X
    IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning for electroencephalogram (EEG) classification tasks: a review.
    Craik A; He Y; Contreras-Vidal JL
    J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early Alzheimer's disease diagnosis based on EEG spectral images using deep learning.
    Bi X; Wang H
    Neural Netw; 2019 Jun; 114():119-135. PubMed ID: 30903945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel Spatial-Temporal Self-Attention CNN-Based Motor Imagery Classification for BCI.
    Liu X; Shen Y; Liu J; Yang J; Xiong P; Lin F
    Front Neurosci; 2020; 14():587520. PubMed ID: 33362458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.