BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34843960)

  • 1. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases.
    Xiao X; Hu Q; Deng X; Shi K; Zhang W; Jiang Y; Ma X; Zeng J; Wang X
    Pharmacol Res; 2022 Jan; 175():106005. PubMed ID: 34843960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kaempferol efficacy in metabolic diseases: Molecular mechanisms of action in diabetes mellitus, obesity, non-alcoholic fatty liver disease, steatohepatitis, and atherosclerosis.
    Yao YX; Yu YJ; Dai S; Zhang CY; Xue XY; Zhou ML; Yao CH; Li YX
    Biomed Pharmacother; 2024 Jun; 175():116694. PubMed ID: 38713943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kaempferol protects mice from d-GalN/LPS-induced acute liver failure by regulating the ER stress-Grp78-CHOP signaling pathway.
    Wang H; Chen L; Zhang X; Xu L; Xie B; Shi H; Duan Z; Zhang H; Ren F
    Biomed Pharmacother; 2019 Mar; 111():468-475. PubMed ID: 30594786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kaempferol and atherosclerosis: From mechanism to medicine.
    Chen M; Xiao J; El-Seedi HR; Woźniak KS; Daglia M; Little PJ; Weng J; Xu S
    Crit Rev Food Sci Nutr; 2024; 64(8):2157-2175. PubMed ID: 36099317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatoprotective activity of Cichorium endivia L. extract and its chemical constituents.
    Chen CJ; Deng AJ; Liu C; Shi R; Qin HL; Wang AP
    Molecules; 2011 Oct; 16(11):9049-66. PubMed ID: 22033140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of emodin on liver disease -- comprehensive advances in molecular mechanisms.
    Hu N; Liu J; Xue X; Li Y
    Eur J Pharmacol; 2020 Sep; 882():173269. PubMed ID: 32553811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kaempferol Protects Against Cadmium Chloride-Induced Memory Loss and Hippocampal Apoptosis by Increased Intracellular Glutathione Stores and Activation of PTEN/AMPK Induced Inhibition of Akt/mTOR Signaling.
    El-Kott AF; Bin-Meferij MM; Eleawa SM; Alshehri MM
    Neurochem Res; 2020 Feb; 45(2):295-309. PubMed ID: 31768814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kaempferol Attenuates ROS-Induced Hemolysis and the Molecular Mechanism of Its Induction of Apoptosis on Bladder Cancer.
    Wu P; Meng X; Zheng H; Zeng Q; Chen T; Wang W; Zhang X; Su J
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30309003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress.
    Ashrafizadeh M; Tavakol S; Ahmadi Z; Roomiani S; Mohammadinejad R; Samarghandian S
    Phytother Res; 2020 May; 34(5):911-923. PubMed ID: 31829475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding cell death signals in liver inflammation.
    Brenner C; Galluzzi L; Kepp O; Kroemer G
    J Hepatol; 2013 Sep; 59(3):583-94. PubMed ID: 23567086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protection of Kaempferol on Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage.
    Du W; An Y; He X; Zhang D; He W
    Oxid Med Cell Longev; 2018; 2018():1610751. PubMed ID: 30584457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiR-21 mediates the protection of kaempferol against hypoxia/reoxygenation-induced cardiomyocyte injury via promoting Notch1/PTEN/AKT signaling pathway.
    Huang J; Qi Z
    PLoS One; 2020; 15(11):e0241007. PubMed ID: 33151961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective Mechanism of Edible Food Plants against Alcoholic Liver Disease with Special Mention to Polyphenolic Compounds.
    Zhao L; Mehmood A; Yuan D; Usman M; Murtaza MA; Yaqoob S; Wang C
    Nutrients; 2021 May; 13(5):. PubMed ID: 34064981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperation of liver cells in health and disease.
    Kmieć Z
    Adv Anat Embryol Cell Biol; 2001; 161():III-XIII, 1-151. PubMed ID: 11729749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling.
    Sharma D; Gondaliya P; Tiwari V; Kalia K
    Biomed Pharmacother; 2019 Jan; 109():1610-1619. PubMed ID: 30551415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review.
    Imran M; Rauf A; Shah ZA; Saeed F; Imran A; Arshad MU; Ahmad B; Bawazeer S; Atif M; Peters DG; Mubarak MS
    Phytother Res; 2019 Feb; 33(2):263-275. PubMed ID: 30402931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kaempferol Inhibits Zearalenone-Induced Oxidative Stress and Apoptosis via the PI3K/Akt-Mediated Nrf2 Signaling Pathway: In Vitro and In Vivo Studies.
    Rajendran P; Ammar RB; Al-Saeedi FJ; Mohamed ME; ElNaggar MA; Al-Ramadan SY; Bekhet GM; Soliman AM
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33379332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway.
    Varshney R; Gupta S; Roy P
    Mol Cell Endocrinol; 2017 Jun; 448():1-20. PubMed ID: 28237721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatoprotective effect of total flavonoids of Mallotus apelta (Lour.) Muell.Arg. leaf against carbon tetrachloride-induced liver fibrosis in rats via modulation of TGF-β1/Smad and NF-κB signaling pathways.
    Zhang B; Lai L; Tan Y; Liang Q; Bai F; Mai W; Huang Q; Ye Y
    J Ethnopharmacol; 2020 May; 254():112714. PubMed ID: 32105750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protective effect of juglanin on fructose-induced hepatitis by inhibiting inflammation and apoptosis through TLR4 and JAK2/STAT3 signaling pathways in fructose-fed rats.
    Zhou GY; Yi YX; Jin LX; Lin W; Fang PP; Lin XZ; Zheng Y; Pan CW
    Biomed Pharmacother; 2016 Jul; 81():318-328. PubMed ID: 27261609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.