BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34844122)

  • 1. Towards the next generation of recurrent network models for cognitive neuroscience.
    Yang GR; Molano-Mazón M
    Curr Opin Neurobiol; 2021 Oct; 70():182-192. PubMed ID: 34844122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis.
    Wang Y; Wang Y; Lui YW
    Neuroimage; 2018 Sep; 178():385-402. PubMed ID: 29782993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent neural networks as versatile tools of neuroscience research.
    Barak O
    Curr Opin Neurobiol; 2017 Oct; 46():1-6. PubMed ID: 28668365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local online learning in recurrent networks with random feedback.
    Murray JM
    Elife; 2019 May; 8():. PubMed ID: 31124785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Considerations in using recurrent neural networks to probe neural dynamics.
    Kao JC
    J Neurophysiol; 2019 Dec; 122(6):2504-2521. PubMed ID: 31619125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysically interpretable recurrent neural network for functional magnetic resonance imaging analysis and sparsity based causal architecture discovery.
    Wang Y; Wang Y; Lui YW
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():275-278. PubMed ID: 30440391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks.
    Bitzer S; Kiebel SJ
    Biol Cybern; 2012 Jul; 106(4-5):201-17. PubMed ID: 22581026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep social neuroscience: the promise and peril of using artificial neural networks to study the social brain.
    Sievers B; Thornton MA
    Soc Cogn Affect Neurosci; 2024 Feb; 19(1):. PubMed ID: 38334747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing computational system dynamics from neural data with recurrent neural networks.
    Durstewitz D; Koppe G; Thurm MI
    Nat Rev Neurosci; 2023 Nov; 24(11):693-710. PubMed ID: 37794121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent neural network from adder's perspective: Carry-lookahead RNN.
    Jiang H; Qin F; Cao J; Peng Y; Shao Y
    Neural Netw; 2021 Dec; 144():297-306. PubMed ID: 34543855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Neural Networks for Neuroscientists: A Primer.
    Yang GR; Wang XJ
    Neuron; 2020 Sep; 107(6):1048-1070. PubMed ID: 32970997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive network neuroscience.
    Medaglia JD; Lynall ME; Bassett DS
    J Cogn Neurosci; 2015 Aug; 27(8):1471-91. PubMed ID: 25803596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring weight initialization, diversity of solutions, and degradation in recurrent neural networks trained for temporal and decision-making tasks.
    Jarne C; Laje R
    J Comput Neurosci; 2023 Nov; 51(4):407-431. PubMed ID: 37561278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of recurrent infomax on the information processing capability of input-driven recurrent neural networks.
    Tanaka T; Nakajima K; Aoyagi T
    Neurosci Res; 2020 Jul; 156():225-233. PubMed ID: 32068068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategic cognitive sequencing: a computational cognitive neuroscience approach.
    Herd SA; Krueger KA; Kriete TE; Huang TR; Hazy TE; O'Reilly RC
    Comput Intell Neurosci; 2013; 2013():149329. PubMed ID: 23935605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies.
    Soo WWM; Goudar V; Wang XJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the "Conceptual Nervous System": Can computational cognitive neuroscience transform learning theory?
    Soto FA
    Behav Processes; 2019 Oct; 167():103908. PubMed ID: 31381986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Guided Tutorial on Modelling Human Event-Related Potentials with Recurrent Neural Networks.
    O'Reilly JA; Wehrman J; Sowman PF
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.