These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 34844357)
61. Simultaneous electrochemical degradation of tetracycline and metronidazole through a high-efficiency and low-energy-consumption advanced oxidation process. Wang L; Liu Y; Pang D; Song H; Zhang S Chemosphere; 2022 Apr; 292():133469. PubMed ID: 34973244 [TBL] [Abstract][Full Text] [Related]
62. Effect of matrix components on UV/H2O2 and UV/S2O8(2-) advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Yang Y; Pignatello JJ; Ma J; Mitch WA Water Res; 2016 Feb; 89():192-200. PubMed ID: 26657355 [TBL] [Abstract][Full Text] [Related]
63. Sulfate-mediated electrooxidation of X-ray contrast media on boron-doped diamond anode. Radjenovic J; Petrovic M Water Res; 2016 May; 94():128-135. PubMed ID: 26938498 [TBL] [Abstract][Full Text] [Related]
64. Soft drink wastewater treatment by electrocoagulation-electrooxidation processes. Linares Hernández I; Barrera Díaz C; Valdés Cerecero M; Almazán Sánchez PT; Castañeda Juárez M; Lugo Lugo V Environ Technol; 2017 Feb; 38(4):433-442. PubMed ID: 27257937 [TBL] [Abstract][Full Text] [Related]
65. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. Radjenovic J; Bagastyo A; Rozendal RA; Mu Y; Keller J; Rabaey K Water Res; 2011 Feb; 45(4):1579-86. PubMed ID: 21167547 [TBL] [Abstract][Full Text] [Related]
66. Efficient removal of micropollutants from low-conductance surface water using an electrochemical Janus ceramic membrane filtration system. Li Z; Li X; Li Y; Li J; Yi Q; Gao F; Wang Z Water Res; 2022 Jul; 220():118627. PubMed ID: 35609428 [TBL] [Abstract][Full Text] [Related]
67. Degradation of thiocyanate by electrochemical oxidation process in coke oven wastewater: Role of operative parameters and mechanistic study. Turan A; Keyikoglu R; Kobya M; Khataee A Chemosphere; 2020 Sep; 255():127014. PubMed ID: 32679632 [TBL] [Abstract][Full Text] [Related]
68. Highly efficient degradation of berberine chloride form wastewater by a novel three-dimensional electrode photoelectrocatalytic system. Liu R; Zhang Y Environ Sci Pollut Res Int; 2018 Apr; 25(10):9873-9886. PubMed ID: 29372529 [TBL] [Abstract][Full Text] [Related]
69. Water recovery from yarn fabric dyeing wastewater using electrochemical oxidation and membrane processes. Bouchareb R; Bilici Z; Dizge N Water Environ Res; 2022 Jan; 94(1):e1681. PubMed ID: 35075710 [TBL] [Abstract][Full Text] [Related]
70. Comparative electrochemical oxidation of the secondary effluent of petrochemical wastewater with electro-Fenton and anodic oxidation with supporting electrolytes. Li H; Kuang X; Shen X; Zhu J Environ Technol; 2022 Jan; 43(3):431-442. PubMed ID: 32633671 [TBL] [Abstract][Full Text] [Related]
71. Degradation of typical macrolide antibiotic roxithromycin by hydroxyl radical: kinetics, products, and toxicity assessment. Li W; Xu X; Lyu B; Tang Y; Zhang Y; Chen F; Korshin G Environ Sci Pollut Res Int; 2019 May; 26(14):14570-14582. PubMed ID: 30877533 [TBL] [Abstract][Full Text] [Related]
72. Electrically supported mediator Co(II)-activated peroxydisulfate synergistic process for organic contaminants elimination. Liu B; Wang Z; Lu H; Huang B; Feng L; Zheng H Environ Res; 2022 Nov; 214(Pt 1):113778. PubMed ID: 35798271 [TBL] [Abstract][Full Text] [Related]
73. Removal of trace organic chemicals in wastewater effluent by UV/H Nihemaiti M; Miklos DB; Hübner U; Linden KG; Drewes JE; Croué JP Water Res; 2018 Nov; 145():487-497. PubMed ID: 30193192 [TBL] [Abstract][Full Text] [Related]
74. Removal of phenol from wastewater by electrochemical bromination in a flow reactor. Liu L; Hao S; Liu J; Zhou H; Hu X Environ Sci Pollut Res Int; 2022 Dec; 29(59):88681-88689. PubMed ID: 35836049 [TBL] [Abstract][Full Text] [Related]
75. Experimental and theoretical insight into hydroxyl and sulfate radicals-mediated degradation of carbamazepine. Xiao R; Ma J; Luo Z; Zeng W; Wei Z; Spinney R; Hu WP; Dionysiou DD Environ Pollut; 2020 Feb; 257():113498. PubMed ID: 31761579 [TBL] [Abstract][Full Text] [Related]
76. Direct and indirect photolysis of the antibiotic enoxacin: kinetics of oxidation by reactive photo-induced species and simulations. Lastre-Acosta AM; Barberato B; Parizi MPS; Teixeira ACSC Environ Sci Pollut Res Int; 2019 Feb; 26(5):4337-4347. PubMed ID: 29931641 [TBL] [Abstract][Full Text] [Related]
77. UV/H Miklos DB; Hartl R; Michel P; Linden KG; Drewes JE; Hübner U Water Res; 2018 Jun; 136():169-179. PubMed ID: 29501761 [TBL] [Abstract][Full Text] [Related]
78. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Brillas E Chemosphere; 2020 Jul; 250():126198. PubMed ID: 32105855 [TBL] [Abstract][Full Text] [Related]
79. Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation. Radjenovic J; Flexer V; Donose BC; Sedlak DL; Keller J Environ Sci Technol; 2013; 47(23):13686-94. PubMed ID: 24261992 [TBL] [Abstract][Full Text] [Related]
80. Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods. Fu R; Zhang PS; Jiang YX; Sun L; Sun XH Chemosphere; 2023 Jan; 311(Pt 1):136993. PubMed ID: 36309052 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]