These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 34844406)
1. Controlling the Thermoelectric Properties of Nb-Doped TiO Liu X; Kepaptsoglou D; Gao Z; Thomas A; Maji K; Guilmeau E; Azough F; Ramasse QM; Freer R ACS Appl Mater Interfaces; 2021 Dec; 13(48):57326-57340. PubMed ID: 34844406 [TBL] [Abstract][Full Text] [Related]
2. High Power Factor Nb-Doped TiO Liu X; Kepaptsoglou D; Jakubczyk E; Yu J; Thomas A; Wang B; Azough F; Gao Z; Zhong X; Dorey R; Ramasse QM; Freer R ACS Appl Mater Interfaces; 2023 Feb; 15(4):5071-5085. PubMed ID: 36656149 [TBL] [Abstract][Full Text] [Related]
3. Optimum in the thermoelectric efficiency of nanostructured Nb-doped TiO Verchère A; Pailhès S; Le Floch S; Cottrino S; Debord R; Fantozzi G; Misra S; Candolfi C; Lenoir B; Daniele S; Mishra S Phys Chem Chem Phys; 2020 Jun; 22(23):13008-13016. PubMed ID: 32478345 [TBL] [Abstract][Full Text] [Related]
4. Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722. Kieslich G; Veremchuk I; Antonyshyn I; Zeier WG; Birkel CS; Weldert K; Heinrich CP; Visnow E; Panthöfer M; Burkhardt U; Grin Y; Tremel W Phys Chem Chem Phys; 2013 Oct; 15(37):15399-403. PubMed ID: 23936907 [TBL] [Abstract][Full Text] [Related]
5. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb An D; Chen S; Lu Z; Li R; Chen W; Fan W; Wang W; Wu Y ACS Appl Mater Interfaces; 2019 Aug; 11(31):27788-27797. PubMed ID: 31287652 [TBL] [Abstract][Full Text] [Related]
6. Low Thermal Conductivity and High Thermoelectric Performance of Nb-Doped Quarternary Mixed Crystal Nb Danish MH; Muhammad N; Chen T; Li S; Wang Q; Li D; Xin H; Zhang J; Li Z; Qin X ACS Appl Mater Interfaces; 2024 Jan; 16(4):4836-4846. PubMed ID: 38234104 [TBL] [Abstract][Full Text] [Related]
7. Vacancy-Based Defect Regulation for High Thermoelectric Performance in Ge Chen S; Bai H; Li J; Pan W; Jiang X; Li Z; Chen Z; Yan Y; Su X; Wu J; Uher C; Tang X ACS Appl Mater Interfaces; 2020 Apr; 12(17):19664-19673. PubMed ID: 32255612 [TBL] [Abstract][Full Text] [Related]
8. TiO Zavjalov A; Tikhonov S; Kosyanov D Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31500279 [TBL] [Abstract][Full Text] [Related]
10. Highly Enhanced Thermoelectric and Mechanical Properties of Bi-Sb-Te Compounds by Carrier Modulation and Microstructure Adjustment. Liang H; Lou Q; Zhu YK; Guo J; Wang ZY; Gu SW; Yu W; Feng J; He J; Ge ZH ACS Appl Mater Interfaces; 2021 Sep; 13(38):45589-45599. PubMed ID: 34542277 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous Enhancement of the Power Factor and Phonon Blocking in Nb-Doped WSe Danish MH; Yang S; Ming H; Chen T; Wang Q; Zhang J; Li D; Li Z; Qin X ACS Appl Mater Interfaces; 2023 May; 15(18):22167-22175. PubMed ID: 37125742 [TBL] [Abstract][Full Text] [Related]
12. Electrical Conductivity, Thermoelectric Power, and Equilibration Kinetics of Nb-Doped TiO2. Nowotny J; Bak T; Dickey EC; Sigmund W; Alim MA J Phys Chem A; 2016 Sep; 120(34):6822-37. PubMed ID: 27490974 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the Thermoelectric Performance of Calcium Cobaltite Ceramics by Tuning Composition and Processing. Yu J; Chen K; Azough F; Alvarez-Ruiz DT; Reece MJ; Freer R ACS Appl Mater Interfaces; 2020 Oct; 12(42):47634-47646. PubMed ID: 33026220 [TBL] [Abstract][Full Text] [Related]
14. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics. Li J; Li F; Li C; Yang G; Xu Z; Zhang S Sci Rep; 2015 Feb; 5():8295. PubMed ID: 25656713 [TBL] [Abstract][Full Text] [Related]
15. Enhanced thermoelectric properties of Ga-doped In2O3 ceramics via synergistic band gap engineering and phonon suppression. Liu Y; Xu W; Liu DB; Yu M; Lin YH; Nan CW Phys Chem Chem Phys; 2015 May; 17(17):11229-33. PubMed ID: 25829235 [TBL] [Abstract][Full Text] [Related]
16. High Thermoelectric Performance of AgSb Tan X; Ding J; Luo H; Delaire O; Yang J; Zhou Z; Lan JL; Lin YH; Nan CW ACS Appl Mater Interfaces; 2020 Sep; 12(37):41333-41341. PubMed ID: 32820890 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Thermoelectric Properties of Nb-Doped Ti(FeCoNi)Sb Pseudo-Ternary Half-Heusler Alloys Prepared Using the Microwave Method. Zhang R; Kong J; Hou Y; Zhao L; Zhu J; Li C; Zhao D Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629820 [TBL] [Abstract][Full Text] [Related]
18. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms. Han MK; Jin Y; Lee DH; Kim SJ Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29072613 [TBL] [Abstract][Full Text] [Related]
19. Enhanced thermoelectric performance of In2O3-based ceramics via Nanostructuring and Point Defect Engineering. Lan JL; Liu Y; Lin YH; Nan CW; Cai Q; Yang X Sci Rep; 2015 Jan; 5():7783. PubMed ID: 25586762 [TBL] [Abstract][Full Text] [Related]
20. Regulating Multiscale Defects to Enhance the Thermoelectric Performance of Ca Shi Z; Tong S; Wei J; Guo Y; Zhang Y; Wang L; Zhang J ACS Appl Mater Interfaces; 2022 Jul; 14(28):32166-32175. PubMed ID: 35802864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]