BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 34845188)

  • 1. Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single-cell transcriptomics.
    Tirier SM; Mallm JP; Steiger S; Poos AM; Awwad MHS; Giesen N; Casiraghi N; Susak H; Bauer K; Baumann A; John L; Seckinger A; Hose D; Müller-Tidow C; Goldschmidt H; Stegle O; Hundemer M; Weinhold N; Raab MS; Rippe K
    Nat Commun; 2021 Nov; 12(1):6960. PubMed ID: 34845188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape.
    de Jong MME; Kellermayer Z; Papazian N; Tahri S; Hofste Op Bruinink D; Hoogenboezem R; Sanders MA; van de Woestijne PC; Bos PK; Khandanpour C; Vermeulen J; Moreau P; van Duin M; Broijl A; Sonneveld P; Cupedo T
    Nat Immunol; 2021 Jun; 22(6):769-780. PubMed ID: 34017122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy.
    Bailur JK; McCachren SS; Doxie DB; Shrestha M; Pendleton K; Nooka AK; Neparidze N; Parker TL; Bar N; Kaufman JL; Hofmeister CC; Boise LH; Lonial S; Kemp ML; Dhodapkar KM; Dhodapkar MV
    JCI Insight; 2019 Apr; 5(11):. PubMed ID: 31013254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Drug Resistance in Relapse and Refractory Multiple Myeloma.
    Yang WC; Lin SF
    Biomed Res Int; 2015; 2015():341430. PubMed ID: 26649299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving therapy resistance mechanisms in multiple myeloma by multiomics subclone analysis.
    Poos AM; Prokoph N; Przybilla MJ; Mallm JP; Steiger S; Seufert I; John L; Tirier SM; Bauer K; Baumann A; Rohleder J; Munawar U; Rasche L; Kortüm KM; Giesen N; Reichert P; Huhn S; Müller-Tidow C; Goldschmidt H; Stegle O; Raab MS; Rippe K; Weinhold N
    Blood; 2023 Nov; 142(19):1633-1646. PubMed ID: 37390336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma.
    Görgün G; Samur MK; Cowens KB; Paula S; Bianchi G; Anderson JE; White RE; Singh A; Ohguchi H; Suzuki R; Kikuchi S; Harada T; Hideshima T; Tai YT; Laubach JP; Raje N; Magrangeas F; Minvielle S; Avet-Loiseau H; Munshi NC; Dorfman DM; Richardson PG; Anderson KC
    Clin Cancer Res; 2015 Oct; 21(20):4607-18. PubMed ID: 25979485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in the Transcriptional Programs of Myeloma Cells and the Microenvironment during Extramedullary Progression Affect Proliferation and Immune Evasion.
    Ryu D; Kim SJ; Hong Y; Jo A; Kim N; Kim HJ; Lee HO; Kim K; Park WY
    Clin Cancer Res; 2020 Feb; 26(4):935-944. PubMed ID: 31558476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iberdomide increases innate and adaptive immune cell subsets in the bone marrow of patients with relapsed/refractory multiple myeloma.
    Van Oekelen O; Amatangelo M; Guo M; Upadhyaya B; Cribbs AP; Kelly G; Patel M; Kim-Schulze S; Flynt E; Lagana A; Gooding S; Merad M; Jagganath S; Pierceall WE; Oppermann U; Thakurta A; Parekh S
    Cell Rep Med; 2024 Jun; 5(6):101584. PubMed ID: 38776911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell RNA sequencing reveals the tumor microenvironment and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient.
    Lee HW; Chung W; Lee HO; Jeong DE; Jo A; Lim JE; Hong JH; Nam DH; Jeong BC; Park SH; Joo KM; Park WY
    Genome Med; 2020 May; 12(1):47. PubMed ID: 32460812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The IKZF1-IRF4/IRF5 Axis Controls Polarization of Myeloma-Associated Macrophages.
    Mougiakakos D; Bach C; Böttcher M; Beier F; Röhner L; Stoll A; Rehli M; Gebhard C; Lischer C; Eberhardt M; Vera J; Büttner-Herold M; Bitterer K; Balzer H; Leffler M; Jitschin S; Hundemer M; Awwad MHS; Busch M; Stenger S; Völkl S; Schütz C; Krönke J; Mackensen A; Bruns H
    Cancer Immunol Res; 2021 Mar; 9(3):265-278. PubMed ID: 33563611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma.
    Issa ME; Takhsha FS; Chirumamilla CS; Perez-Novo C; Vanden Berghe W; Cuendet M
    Clin Epigenetics; 2017; 9():17. PubMed ID: 28203307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma.
    Manier S; Kawano Y; Bianchi G; Roccaro AM; Ghobrial IM
    Curr Opin Hematol; 2016 Jul; 23(4):426-33. PubMed ID: 27101529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CXCL10 Recruitment of γδ T Cells into the Hypoxic Bone Marrow Environment Leads to IL17 Expression and Multiple Myeloma Progression.
    Wang J; Peng Z; Guo J; Wang Y; Wang S; Jiang H; Wang M; Xie Y; Li X; Hu M; Xie Y; Cheng H; Li T; Jia L; Song J; Wang Y; Hou J; Liu Z
    Cancer Immunol Res; 2023 Oct; 11(10):1384-1399. PubMed ID: 37586075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exosomal mRNAs and lncRNAs involved in multiple myeloma resistance to bortezomib.
    Tang JX; Chen Q; Li Q; He YH; Xiao D
    Cell Biol Int; 2021 May; 45(5):965-975. PubMed ID: 33372728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple myeloma-related deregulation of bone marrow-derived CD34(+) hematopoietic stem and progenitor cells.
    Bruns I; Cadeddu RP; Brueckmann I; Fröbel J; Geyh S; Büst S; Fischer JC; Roels F; Wilk CM; Schildberg FA; Hünerlitürkoglu AN; Zilkens C; Jäger M; Steidl U; Zohren F; Fenk R; Kobbe G; Brors B; Czibere A; Schroeder T; Trumpp A; Haas R
    Blood; 2012 Sep; 120(13):2620-30. PubMed ID: 22517906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma.
    Ghobrial IM; Liu CJ; Zavidij O; Azab AK; Baz R; Laubach JP; Mishima Y; Armand P; Munshi NC; Basile F; Constantine M; Vredenburgh J; Boruchov A; Crilley P; Henrick PM; Hornburg KTV; Leblebjian H; Chuma S; Reyes K; Noonan K; Warren D; Schlossman R; Paba-Prada C; Anderson KC; Weller E; Trippa L; Shain K; Richardson PG
    Am J Hematol; 2019 Nov; 94(11):1244-1253. PubMed ID: 31456261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans.
    Görgün GT; Whitehill G; Anderson JL; Hideshima T; Maguire C; Laubach J; Raje N; Munshi NC; Richardson PG; Anderson KC
    Blood; 2013 Apr; 121(15):2975-87. PubMed ID: 23321256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microenvironment and multiple myeloma spread.
    Ribatti D; Moschetta M; Vacca A
    Thromb Res; 2014 May; 133 Suppl 2():S102-6. PubMed ID: 24862128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PD-L1/PD-1 Pattern of Expression Within the Bone Marrow Immune Microenvironment in Smoldering Myeloma and Active Multiple Myeloma Patients.
    Costa F; Vescovini R; Marchica V; Storti P; Notarfranchi L; Dalla Palma B; Toscani D; Burroughs-Garcia J; Catarozzo MT; Sammarelli G; Giuliani N
    Front Immunol; 2020; 11():613007. PubMed ID: 33488620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone marrow myeloid cells in regulation of multiple myeloma progression.
    Herlihy SE; Lin C; Nefedova Y
    Cancer Immunol Immunother; 2017 Aug; 66(8):1007-1014. PubMed ID: 28378067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.