These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34845332)

  • 21. Large-Scale Mapping of Moiré Superlattices by Hyperspectral Raman Imaging.
    Lin KQ; Holler J; Bauer JM; Parzefall P; Scheuck M; Peng B; Korn T; Bange S; Lupton JM; Schüller C
    Adv Mater; 2021 Aug; 33(34):e2008333. PubMed ID: 34242447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic Intercalation Induced Spin-Flip Transition in Bilayer CrI
    Wu D; Zhao Y; Yang Y; Huang L; Xiao Y; Chen S; Zhao Y
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Switchable Interlayer Magnetic Coupling of Bilayer CrI
    Jiang Y; Guo Y; Yan X; Zeng H; Lin L; Mou X
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices.
    Cao Y; Fatemi V; Demir A; Fang S; Tomarken SL; Luo JY; Sanchez-Yamagishi JD; Watanabe K; Taniguchi T; Kaxiras E; Ashoori RC; Jarillo-Herrero P
    Nature; 2018 Apr; 556(7699):80-84. PubMed ID: 29512654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Moiré-Induced Transport in CVD-Based Small-Angle Twisted Bilayer Graphene.
    Piccinini G; Mišeikis V; Novelli P; Watanabe K; Taniguchi T; Polini M; Coletti C; Pezzini S
    Nano Lett; 2022 Jul; 22(13):5252-5259. PubMed ID: 35776918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of layer stacking on the electronic structure of graphene nanoribbons.
    Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK
    ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anisotropic moiré optical transitions in twisted monolayer/bilayer phosphorene heterostructures.
    Zhao S; Wang E; Üzer EA; Guo S; Qi R; Tan J; Watanabe K; Taniguchi T; Nilges T; Gao P; Zhang Y; Cheng HM; Liu B; Zou X; Wang F
    Nat Commun; 2021 Jun; 12(1):3947. PubMed ID: 34168154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Moiré Phonons in Twisted Bilayer MoS
    Lin ML; Tan QH; Wu JB; Chen XS; Wang JH; Pan YH; Zhang X; Cong X; Zhang J; Ji W; Hu PA; Liu KH; Tan PH
    ACS Nano; 2018 Aug; 12(8):8770-8780. PubMed ID: 30086224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moiré Superlattices.
    Li Y; Wang X; Tang D; Wang X; Watanabe K; Taniguchi T; Gamelin DR; Cobden DH; Yankowitz M; Xu X; Li J
    Adv Mater; 2021 Dec; 33(51):e2105879. PubMed ID: 34632646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures.
    Liu Y; Zeng C; Yu J; Zhong J; Li B; Zhang Z; Liu Z; Wang ZM; Pan A; Duan X
    Chem Soc Rev; 2021 Jun; 50(11):6401-6422. PubMed ID: 33942837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterostrain-enabled dynamically tunable moiré superlattice in twisted bilayer graphene.
    Gao X; Sun H; Kang DH; Wang C; Wang QJ; Nam D
    Sci Rep; 2021 Nov; 11(1):21402. PubMed ID: 34725380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Moiré Superlattice Effects and Band Structure Evolution in Near-30-Degree Twisted Bilayer Graphene.
    Hamer MJ; Giampietri A; Kandyba V; Genuzio F; Menteş TO; Locatelli A; Gorbachev RV; Barinov A; Mucha-Kruczyński M
    ACS Nano; 2022 Feb; 16(2):1954-1962. PubMed ID: 35073479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flat Bands in Magic-Angle Bilayer Photonic Crystals at Small Twists.
    Dong K; Zhang T; Li J; Wang Q; Yang F; Rho Y; Wang D; Grigoropoulos CP; Wu J; Yao J
    Phys Rev Lett; 2021 Jun; 126(22):223601. PubMed ID: 34152166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene.
    Yoo H; Engelke R; Carr S; Fang S; Zhang K; Cazeaux P; Sung SH; Hovden R; Tsen AW; Taniguchi T; Watanabe K; Yi GC; Kim M; Luskin M; Tadmor EB; Kaxiras E; Kim P
    Nat Mater; 2019 May; 18(5):448-453. PubMed ID: 30988451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Moiré Modulation of Van Der Waals Potential in Twisted Hexagonal Boron Nitride.
    Chiodini S; Kerfoot J; Venturi G; Mignuzzi S; Alexeev EM; Teixeira Rosa B; Tongay S; Taniguchi T; Watanabe K; Ferrari AC; Ambrosio A
    ACS Nano; 2022 May; 16(5):7589-7604. PubMed ID: 35486712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electric Field-Modulated Magnetic Phase Transition in van der Waals CrI
    Xu R; Zou X
    J Phys Chem Lett; 2020 Apr; 11(8):3152-3158. PubMed ID: 32239941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrically Tunable Flat Bands and Magnetism in Twisted Bilayer Graphene.
    Wolf TMR; Lado JL; Blatter G; Zilberberg O
    Phys Rev Lett; 2019 Aug; 123(9):096802. PubMed ID: 31524477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Skyrmions in the Moiré of van der Waals 2D Magnets.
    Tong Q; Liu F; Xiao J; Yao W
    Nano Lett; 2018 Nov; 18(11):7194-7199. PubMed ID: 30285450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable Phases of Moiré Excitons in van der Waals Heterostructures.
    Brem S; Linderälv C; Erhart P; Malic E
    Nano Lett; 2020 Dec; 20(12):8534-8540. PubMed ID: 32970445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for Moiré Trions in Twisted MoSe
    Marcellina E; Liu X; Hu Z; Fieramosca A; Huang Y; Du W; Liu S; Zhao J; Watanabe K; Taniguchi T; Xiong Q
    Nano Lett; 2021 May; 21(10):4461-4468. PubMed ID: 33970625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.